23 research outputs found

    Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    Get PDF
    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    operres.pdf

    No full text
    a b s t r a c t The paper deals with joint probabilistic constraints defined by a Gaussian coefficient matrix. It is shown how to explicitly reduce the computation of values and gradients of the underlying probability function to that of Gaussian distribution functions. This allows us to employ existing efficient algorithms for calculating this latter class of functions in order to solve probabilistically constrained optimization problems of the indicated type. Results are illustrated by an example from energy production

    Effect of pedaling cadence on muscle oxygenation during high-intensity cycling until exhaustion: a comparison between untrained subjects and triathletes

    Get PDF
    Purpose: The aim of this study was to compare the muscle oxygenation between trained and untrained subjects during heavy exercise until exhaustion at two extreme pedaling cadences using a NIRS system. Methods: Nine untrained male subjects and nine male competitive triathletes cycled until exhaustion at an intensity corresponding to 90 % of the power output achieved at peak oxygen uptake at 40 and 100 rpm. Gas exchanges were measured breath-by-breath during each exercise. Muscle (de) oxygenation was monitored continuously by near-infrared spectroscopy on the Vastus Lateralis. Results: Muscle deoxygenation (Delta deoxy[Hb + Mb], i.e., O-2 extraction) and Delta total[Hb + Mb] were significantly higher at 40 rpm compared to 100 rpm during the exercise in untrained subjects but not in triathletes (p < 0.05). The time performed until exhaustion was significantly higher at 40 than at 100 rpm in untrained subjects (373 +/- 55 vs. 234 +/- 37 s, respectively) but not in triathletes (339 +/- 69 vs. 325 +/- 66 s). Conclusions: These results indicate that high aerobic fitness (1) allows for better regulation between (V) over dotO(2M) and (Q) over dot O-2M following the change in pedaling cadence, and (2) is the most important factor in the relationship between pedaling cadence and performance
    corecore