2,770 research outputs found
Density-functional-based predictions of Raman and IR spectra for small Si clusters
We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems
Involvement of Mhc Loci in immune responses that are not Ir-gene-controlled
Twenty-nine randomly chosen, soluble antigens, many of them highly complex, were used to immunize mice of two strains, C3H and B10.RIII. Lymphnode cells from the immunized mice were restimulated in vitro with the priming antigens and the proliferative response of the cells was determined. Both strains were responders to 28 of 29 antigens. Eight antigens were then used to immunize 11 congenic strains carrying different H-2 haplotypes, and the T-cell proliferative responses of these strains were determined. Again, all the strains responded to seven of the eight antigens. These experiments were then repeated, but this time -antibodies specific for the A (AA) or E (EE) molecules were added to the culture to block the in vitro responsiveness. In all but one of the responses, inhibition with both A-specific and E-specific antibodies was observed. The response to one antigen (Blastoinyces) was exceptional in that some strains were nonresponders to this antigen. Furthermore, the response in the responder strains was blocked with A-specific, but not with E-specific, antibodies. The study demonstrates that responses to antigens not controlled by Irr genes nevertheless require participation of class II Mhc molecules. In contrast to Ir gene-controlled responses involving either the A- or the E-molecule controlling loci (but never both), the responses not Ir-controlled involve participation of both A- and E-controlling loci. The lack of Ir-gene control is probably the result of complexity of the responses to multiple determinants. There is thus no principal difference between responses controlled and those not controlled by Ir genes: both types involve the recognition of the antigen, in the context of Mhc molecules
The 'alternative' EMT switch
Epithelial to mesenchymal transition (EMT) is an essential process in embryonic development and is aberrantly induced in many disease settings. Work carried out by Chonghui Cheng's laboratory addressed the involvement of alternative RNA splicing in EMT and its link to tumour progression. They describe a switch in CD44 expression from variant isoform(s) to the standard isoform and showed, for the first time, that this is required for normal epithelial cells to undergo EMT. In addition, they link expression of the CD44 standard isoform with high-grade breast cancer and to activation of the phosphoinositide 3-kinase/Akt pathway and apoptosis resistance in a mouse model of recurrent disease
Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form
binaries and, during the process of merger, emit low-frequency gravitational
radiation in the process. In this paper we consider the galaxy 3C66B, which was
used as the target of the first multi-messenger search for gravitational waves.
Due to the observed periodicities present in the photometric and astrometric
data of the source of the source, it has been theorized to contain a
supermassive black hole binary. Its apparent 1.05-year orbital period would
place the gravitational wave emission directly in the pulsar timing band. Since
the first pulsar timing array study of 3C66B, revised models of the source have
been published, and timing array sensitivities and techniques have improved
dramatically. With these advances, we further constrain the chirp mass of the
potential supermassive black hole binary in 3C66B to less than using data from the NANOGrav 11-year data set. This
upper limit provides a factor of 1.6 improvement over previous limits, and a
factor of 4.3 over the first search done. Nevertheless, the most recent orbital
model for the source is still consistent with our limit from pulsar timing
array data. In addition, we are able to quantify the improvement made by the
inclusion of source properties gleaned from electromagnetic data to `blind'
pulsar timing array searches. With these methods, it is apparent that it is not
necessary to obtain exact a priori knowledge of the period of a binary to gain
meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
IMPlementation of an Online Relatives’ Toolkit for Psychosis or Bipolar (IMPART Study): Iterative Multiple Case Study to Identify Key Factors Impacting on Staff Uptake and Use
Background: Despite the potential of digital health interventions to improve the delivery of psychoeducation to people with mental health problems and their relatives, and substantial investment in their development, there is little evidence of successful implementation into clinical practice. We report the first implementation study of a digital health intervention: Relatives Education And Coping Toolkit (REACT), into routine mental healthcare. Our main aim was to identify critical factors affecting staff uptake and use of this online self-management tool for relatives of people with psychosis or bipolar.
Methods: A mixed-methods, theory-driven (Normalisation Process Theory), iterative multiple case study approach
using qualitative analysis of interviews with staff and quantitative reporting of uptake. Carer researchers were part of the research team.
Results: In all, 281 staff and 159 relatives from Early Intervention teams across six catchment areas (cases) in
England registered on REACT; 129 staff took part in qualitative interviews. Staff were positive about REACT helping services improve support and meet clinical targets. Implementation was hindered by: high staff caseloads and difficulties prioritising carers; perception of REACT implementation as research; technical difficulties using REACT; poor interoperability with trust computer systems and care pathways; lack of access to mobile technology and training; restricted forum populations; staff fears of risk, online trolling, and replacement by technology; and uncertainty around REACT’s long-term availability
The Knowledge Spillover Theory of Entrepreneurship and Foreign Direct Investment
We explore if the Knowledge Spillover Theory of Entrepreneurship, applied to FDI, provides at least a partial explanation for the greater emergence of recent knowledge-based entrepreneurship in Ireland compared with Wales. In order to examine how FDI and entrepreneurship policy in these two regions might have influenced the levels of knowledge-based entrepreneurship, we outline FDI and entrepreneurship policies for Wales and Ireland and key measures of knowledge creation, and evaluate the extent and nature of FDI activity and its relationship with entrepreneurship in general and knowledge-based entrepreneurship in particular. Implications include possible policy di-rections for countries that are characterized by weak knowledge-creating institutions yet wish to encourage knowledge-based entrepreneurship
Wealth, Tastes, and Entrepreneurial Choice
The nonpecuniary benefits of managing a small business are a first order consideration for many nascent entrepreneurs, yet the preference for business ownership is mostly ignored in models of entrepreneurship and occupational choice. In this paper, we study a population with varying entrepreneurial tastes and wealth in a simple general equilibrium model of occupational choice. This choice yields several important results: (1) entrepreneurship can be thought of as a normal good, generating wealth effects independent of any financing constraints; (2) nonpecuniary entrepreneurs select into small-scale firms; and (3) subsidies designed to stimulate more business entry can have regressive distributional effects. Despite abstracting from other important considerations such as risk, financing constraints, and innovation, we show that nonpecuniary compensation is particularly relevant in discussions of small businesses
Using high angular resolution diffusion imaging data to discriminate cortical regions
Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology
- …