3,620 research outputs found
An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer
Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens
A simple equation for the melt elevation feedback of ice sheets
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby
contributed to global sea-level rise. The rate of ice loss is highly relevant
for coastal protection worldwide. The ice loss is likely to increase under
future warming. Beyond a critical temperature threshold, a meltdown of the
Greenland Ice Sheet is induced by the self-enforcing feedback between its
lowering surface elevation and its increasing surface mass loss: the more ice
that is lost, the lower the ice surface and the warmer the surface air
temperature, which fosters further melting and ice loss. The computation of this rate so far relies on complex numerical models which are the appropriate tools for capturing the complexity of the problem. By contrast we aim here at gaining a conceptual understanding by deriving a purposefully simple equation for the self-enforcing feedback which is then used to estimate the melt time for
different levels of warming using three observable characteristics of the ice
sheet itself and its surroundings. The analysis is purely conceptual in
nature. It is missing important processes like ice dynamics for it to be useful for applications to sea-level rise on centennial timescales, but if the volume
loss is dominated by the feedback, the resulting logarithmic equation unifies
existing numerical simulations and shows that the melt time depends strongly
on the level of warming with a critical slowdown near the threshold: the
median time to lose 10 % of the present-day ice volume varies between
about 3500 years for a temperature level of 0.5 °C above the
threshold and 500 years for 5 °C. Unless future observations show a
significantly higher melting sensitivity than currently observed, a complete
meltdown is unlikely within the next 2000 years without significant
ice-dynamical contributions
Exploring transmission Kikuchi diffraction using a Timepix detector
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods
Niobium-based superconducting nano-devices fabrication using all-metal suspended masks
We report a novel method for the fabrication of superconducting nanodevices
based on niobium. The well-known difficulties of lithographic patterning of
high-quality niobium are overcome by replacing the usual organic resist mask by
a metallic one. The quality of the fabrication procedure is demonstrated by the
realization and characterization of long and narrow superconducting lines and
niobium-gold-niobium proximity SQUIDs
How motifs condition critical thresholds for tipping cascades in complex networks: Linking Micro- to Macro-scales
In this study, we investigate how specific micro interaction structures
(motifs) affect the occurrence of tipping cascades on networks of stylized
tipping elements. We compare the properties of cascades in Erd\"os-R\'enyi
networks and an exemplary moisture recycling network of the Amazon rainforest.
Within these networks, decisive small-scale motifs are the feed forward loop,
the secondary feed forward loop, the zero loop and the neighboring loop.
Of all motifs, the feed forward loop motif stands out in tipping cascades
since it decreases the critical coupling strength necessary to initiate a
cascade more than the other motifs. We find that for this motif, the reduction
of critical coupling strength is 11% less than the critical coupling of a pair
of tipping elements. For highly connected networks, our analysis reveals that
coupled feed forward loops coincide with a strong 90% decrease of the critical
coupling strength.
For the highly clustered moisture recycling network in the Amazon, we observe
regions of very high motif occurrence for each of the four investigated motifs
suggesting that these regions are more vulnerable. The occurrence of motifs is
found to be one order of magnitude higher than in a random Erd\"os-R\'enyi
network.
This emphasizes the importance of local interaction structures for the
emergence of global cascades and the stability of the network as a whole
Chloride transporter KCC2-dependent neuroprotection depends on the N-terminal protein domain
Neurodegeneration is a serious issue of neurodegenerative diseases including epilepsy. Downregulation of the chloride transporter KCC2 in the epileptic tissue may not only affect regulation of the polarity of GABAergic synaptic transmission but also neuronal survival. Here, we addressed the mechanisms of KCC2-dependent neuroprotection by assessing truncated and mutated KCC2 variants in different neurotoxicity models. The results identify a threonine- and tyrosine-phosphorylation-resistant KCC2 variant with increased chloride transport activity, but they also identify the KCC2 N-terminal domain (NTD) as the relevant minimal KCC2 protein domain that is sufficient for neuroprotection. As ectopic expression of the KCC2-NTD works independently of full-length KCC2-dependent regulation of Cl(-) transport or structural KCC2 C-terminus-dependent regulation of synaptogenesis, our study may pave the way for a selective neuroprotective therapeutic strategy that will be applicable to a wide range of neurodegenerative diseases
MACHe3, a prototype for non-baryonic dark matter search: KeV event detection and multicell correlation
Superfluid He3 at ultra-low temperatures (100 microKelvins) is a sensitive
medium for the bolometric detection of particles. MACHe3 (MAtrix of Cells of
Helium 3) is a project for non-baryonic dark matter search using He3 as a
sensitive medium. Simulations made on a high granularity detector show a very
good rejection to background signals. A multicell prototype including 3
bolometers has been developed to allow correlations between the cells for
background event discrimination. One of the cells contains a low activity Co57
source providing conversion electrons of 7.3 and 13.6 keV to confirm the
detection of low energy events. First results on the multicell prototype are
presented. A detection threshold of 1 keV has been achieved. The detection of
low energy conversion electrons coming from the Co57 source is highlighted as
well as the cosmic muon spectrum measurement. The possibility to reject
background events by using the correlation among the cells is demonstrated from
the simultaneous detection of muons in different cells
Dynamics of Tipping Cascades on Complex Networks
Tipping points occur in diverse systems in various disciplines such as
ecology, climate science, economy or engineering. Tipping points are critical
thresholds in system parameters or state variables at which a tiny perturbation
can lead to a qualitative change of the system. Many systems with tipping
points can be modeled as networks of coupled multistable subsystems, e.g.
coupled patches of vegetation, connected lakes, interacting climate tipping
elements or multiscale infrastructure systems. In such networks, tipping events
in one subsystem are able to induce tipping cascades via domino effects. Here,
we investigate the effects of network topology on the occurrence of such
cascades. Numerical cascade simulations with a conceptual dynamical model for
tipping points are conducted on Erd\H{o}s-R\'enyi, Watts-Strogatz and
Barab\'asi-Albert networks. Additionally, we generate more realistic networks
using data from moisture-recycling simulations of the Amazon rainforest and
compare the results to those obtained for the model networks. We furthermore
use a directed configuration model and a stochastic block model which preserve
certain topological properties of the Amazon network to understand which of
these properties are responsible for its increased vulnerability. We find that
clustering and spatial organization increase the vulnerability of networks and
can lead to tipping of the whole network. These results could be useful to
evaluate which systems are vulnerable or robust due to their network topology
and might help to design or manage systems accordingly.Comment: 22 pages, 12 figure
Presynaptic mechanisms of neuronal plasticity and their role in epilepsy
Synaptic communication requires constant adjustments of pre- and postsynaptic efficacies. In addition to synaptic long term plasticity, the presynaptic machinery underlies homeostatic regulations which prevent out of range transmitter release. In this minireview we will discuss the relevance of selected presynaptic mechanisms to epilepsy including voltage- and ligand-gated ion channels as well as cannabinoid and adenosine receptor signaling
- …