1,678 research outputs found
Improved ultrasonic standard reference blocks
A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized
Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration
Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx
Untangling perceptual memory: Hysteresis and adaptation map into separate cortical networks
Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain "decide" what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function)
Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy
The conducting interface of LaAlO/SrTiO heterostructures has been
studied by hard X-ray photoelectron spectroscopy. From the Ti~2 signal and
its angle-dependence we derive that the thickness of the electron gas is much
smaller than the probing depth of 4 nm and that the carrier densities vary with
increasing number of LaAlO overlayers. Our results point to an electronic
reconstruction in the LaAlO overlayer as the driving mechanism for the
conducting interface and corroborate the recent interpretation of the
superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless
type.Comment: 4 pages, 4 figure
Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars
Gusev crater was selected as the landing site for the Spirit rover because of the likelihood that it contained an ancient lake. Although outcrops rich in Mg-Fe carbonate dubbed Comanche were discovered in the Noachian-aged Columbia Hills, they were inferred to result from volcanic hydrothermal activity. Spirit encountered other mineral and chemical indicators of aqueous activity, but none was recognized as definitive evidence for a former lake in part because none was associated with obvious lacustrine sedimentary deposits. However, water discharge into Martian crater basins like Gusev may have been episodic, producing only small amounts of sediment and shallow ephemeral lakes. Evaporative precipitation from such water bodies has been suggested as a way of producing the Mg- and Fe-rich carbonates found in ALH84001 and carbonates and salts in some nakhlites a hypothesis we examine for the Comanche carbonate
Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks
Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain "decide" what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function)
Two-Spinon and Orbital Excitations of the Spin-Peierls System TiOCl
We combine high-resolution resonant inelastic x-ray scattering with cluster
calculations utilizing a recently derived effective magnetic scattering
operator to analyze the polarization, excitation energy, and momentum dependent
excitation spectrum of the low-dimensional quantum magnet TiOCl in the range
expected for orbital and magnetic excitations (0 - 2.5 eV). Ti 3d orbital
excitations yield complete information on the temperature-dependent
crystal-field splitting. In the spin-Peierls phase we observe a dispersive
two-spinon excitation and estimate the inter- and intra-dimer magnetic exchange
coupling from a comparison to cluster calculations
Determination of Survivable Fires
At NASA, there exists no standardized design or testing protocol for spacecraft fire suppression systems (either handheld or total flooding designs). An extinguisher's efficacy in safely suppressing any reasonable or conceivable fire is the primary benchmark. That concept, however, leads to the question of what a reasonable or conceivable fire is. While there exists the temptation to over-size' the fire extinguisher, weight and volume considerations on spacecraft will always (justifiably) push for the minimum size extinguisher required. This paper attempts to address the question of extinguisher size by examining how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or other accumulation of other combustion products (e.g. carbon monoxide). Estimates of these quantities are determined as a function of fire size and mass of material burned. This then becomes the basis for determining the maximum size of a target fire for future fire extinguisher testing
Scale-invariant magnetic anisotropy in RuCl at high magnetic fields
In RuCl, inelastic neutron scattering and Raman spectroscopy reveal a
continuum of non-spin-wave excitations that persists to high temperature,
suggesting the presence of a spin liquid state on a honeycomb lattice. In the
context of the Kitaev model, magnetic fields introduce finite interactions
between the elementary excitations, and thus the effects of high magnetic
fields - comparable to the spin exchange energy scale - must be explored. Here
we report measurements of the magnetotropic coefficient - the second derivative
of the free energy with respect to magnetic field orientation - over a wide
range of magnetic fields and temperatures. We find that magnetic field and
temperature compete to determine the magnetic response in a way that is
independent of the large intrinsic exchange interaction energy. This emergent
scale-invariant magnetic anisotropy provides evidence for a high degree of
exchange frustration that favors the formation of a spin liquid state in
RuCl.Comment: arXiv admin note: substantial text overlap with arXiv:1901.09245.
Nature Physic
- …