75 research outputs found

    Predicting Breast Cancer Response to Neoadjuvant Chemotherapy Using Pretreatment Diffuse Optical Spectroscopic-Texture Analysis

    Get PDF
    Purpose: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pre-treatment DOS functional maps for predicting LABC response to NAC. Methods: LABC patients (n = 37) underwent DOS-breast imaging before starting neoadjuvant chemotherapy. Breast-tissue parametric maps were constructed and texture analyses were performed based on grey level co-occurrence matrices (GLCM) for feature extraction. Ground-truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS-textural features computed on volumetric tumour data before the start of treatment (i.e. “pre-treatment”) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naïve Bayes, and k-nearest neighbour (k-NN) classifiers. Results: Data indicated that textural characteristics of pre-treatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2-homogeneity resulted in the highest accuracy amongst univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5 and 89.0%, respectively and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-Contrast + HbO2-Homogeneity which resulted in a %Sn/%Sp = 78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that pre-treatment tumour DOS-texture features can predict breast cancer response to NAC and potentially guide treatments

    Tracking down carbon inputs underground from an arid zone Australian calcrete.

    Get PDF
    Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota

    Multi‐Stage Evolution of the South Australian Craton: Petrological Constraints on the Architecture, Lithology, and Geochemistry of the Lithospheric Mantle

    No full text
    Abstract To improve the understanding of the formation and evolution of the sub‐continental lithospheric mantle (SCLM) underlying the South Australian Craton we have conducted a detailed petrological study on >3,000 mantle xenocrysts from 13 kimberlites emplaced across the craton. Pressure (P) and temperature (T) estimates on Cr diopside and garnet have been coupled with their chemical concentrations to constrain lithospheric thickness and chemo‐lithostratigraphy. We show that lithospheric thickness is greatest beneath the Gawler Craton, whereas thinner lithosphere occurs beneath the Adelaide Fold Belt. Mineral compositions highlight two litho‐chemical domains within the shallow and deep SCLM that are separated by a mid‐lithosphere discontinuity (MLD). The shallow SCLM (60–130 km) comprises low Cr2O3 lherzolite and wehrlite. Shallow SCLM xenocrysts record depleted and refertilized compositions enriched in light rare earth elements related to metasomatism by kimberlite or related melts. The mid‐lithosphere (130–160 km) is depleted in garnet and Cr diopside which may relate to a layer of pargasite lherzolite. The deep SCLM (>160 km) comprises high Cr2O3 lherzolite with elevated TiO2 and FeO. We interpret the litho‐chemical stratification of the SCLM to reflect a multi‐stage top‐down growth. The shallow SCLM reflects an amalgamation of Precambrian cratonic nuclei characterized by heterogeneity in geochemical enrichment and depletion. Interaction of the shallow SCLM with mantle plumes accreted melts along the paleo‐lithosphere‐asthenosphere boundary, which now occurs as a MLD. The deep SCLM represents depleted mantle residue formed during mantle plume impingement and thickened during orogenesis. This domain has been metasomatized and refertilized by high‐T melts from the asthenosphere

    Mapping the Structure and Metasomatic Enrichment of the Lithospheric Mantle Beneath the Kimberley Craton, Western Australia

    No full text
    Abstract The lithology, geochemistry, and architecture of the continental lithospheric mantle (CLM) underlying the Kimberley Craton of north‐western Australia has been constrained using pressure‐temperature estimates and mineral compositions for >5,000 newly analyzed and published garnet and chrome (Cr) diopside mantle xenocrysts from 25 kimberlites and lamproites of Mesoproterozoic to Miocene age. Single‐grain Cr diopside paleogeotherms define lithospheric thicknesses of 200–250 km and fall along conductive geotherms corresponding to a surface heat flow of 37–40 mW/m2. Similar geotherms derived from Miocene and Mesoproterozoic intrusions indicate that the lithospheric architecture and thermal state of the CLM has remained stable since at least 1,000 Ma. The chemistry of xenocrysts defines a layered lithosphere with lithological and geochemical domains in the shallow (150 km) CLM, separated by a diopside‐depleted and seismically slow mid‐lithosphere discontinuity (100–150 km). The shallow CLM is comprised of Cr diopsides derived from depleted garnet‐poor and spinel‐bearing lherzolite that has been weakly metasomatized. This layer may represent an early (Meso to Neoarchean?) nucleus of the craton. The deep CLM is comprised of high Cr2O3 garnet lherzolite with lesser harzburgite, and eclogite. The peridotite components are inferred to have formed as residues of polybaric partial mantle melting in the Archean, whereas eclogite likely represents former oceanic crust accreted during Paleoproterozoic subduction. This deep CLM was metasomatized by H2O‐rich melts derived from subducted sediments and high‐temperature FeO‐TiO2 melts from the asthenosphere
    corecore