1,048 research outputs found
Alleviation of pressure pulse effects for trains entering tunnels. Volume 1: Summary
The degree to which it is possible to attenuate the effects of pressure pulses on the passengers in trains entering tunnels by modifying the normally abrupt portal of a constant-diameter single track tunnel was investigated. Although the suggested modifications to the tunnel entrance portal may not appreciably decrease the magnitude of the pressure rise, they are very effective in reducing the discomfort to the human ear by substantially decreasing the rate of pressure rise to that which the normal ear can accommodate. Qualitative comparison was made of this portal modification approach with other approaches: decreasing the train speed or sealing the cars. The optimum approach, which is dependent upon the conditions and requirements of each particular rail system, is likely to be the portal modification one for a rapid rail mass transit system
Temporal acceleration of a turbulent channel flow
We report new laboratory experiments of a flow accelerating from an initially turbulent state following the opening of a valve, together with large eddy simulations of the experiments and extended Stokes first problem solutions for the early stages of the flow. The results show that the transient flow closely resembles an accelerating laminar flow superimposed on the original steady turbulent flow. The primary consequence of the acceleration is the temporal growth of a boundary layer from the wall, gradually leading to a strong instability causing transition. This extends the findings of previous direct numerical simulations of transient flow following a near-step increase in flow rate. In this interpretation, the initial turbulence is not the primary characteristic of the resulting transient flow, but can be regarded as noise, the evolution of which is strongly influenced by the development of the boundary layer. We observe the spontaneous appearance of turbulent spots and discontinuities in the velocity signals in time and space, revealing rich detail of the transition process, including a striking contrast between streamwise and wall-normal fluctuating velocities
Applicability of frozen-viscosity models of unsteady wall shear stress
The validity of assumed frozen-viscosity conditions underpinning an important class of theoretical models of unsteady wall shear
stress in transient flows in pipes and channels is assessed using detailed computational fluid dynamics (CFD) simulations. The need for
approximate one-dimensional ð1DÞfx; tg models of the wall stress is unavoidable in analyses of transient flows in extensive pipe networks
because it would be economically impracticable to use higher order methods of analysis. However, the bases of the various models have never
been established rigorously. It is shown herein that a commonly used approach developed by the first authors is flawed in the case of smoothwall
flows although it is more plausible for rough-wall flows. The assessment process is undertaken for a particular, but important, unsteady
flow case, namely, a uniform acceleration from an initially steady turbulent flow. First, detailed predictions from a validated CFD method are
used to derive baseline solutions with which predictions based on approximate models can be compared. Then, alternative solutions are
obtained using various prescribed frozen-viscosity distributions. Differences between these solutions and the baseline solutions are used
to determine which frozen-viscosity distributions are the most promising starting points for developing 1Dfx; tg models of unsteady components
of wall shear stress. It is shown that no frozen-viscosity distribution performs well for large times after the commencement of an
acceleration. However, even the simplest approximation (laminar) performs well for short durations—which is when the greatest amplitudes
of the unsteady components occu
Recommended from our members
LiDAR mapping of tidal marshes for ecogeomorphological modelling in the TIDE project
The European research project TIDE (Tidal Inlets Dynamics and Environment) is developing and validating coupled models describing the morphological, biological and ecological evolution of tidal environments. The interactions between the physical and biological processes occurring in these regions requires that the system be studied as a whole rather than as separate parts. Extensive use of remote sensing including LiDAR is being made to provide validation data for the modelling.
This paper describes the different uses of LiDAR within the project and their relevance to the TIDE science objectives. LiDAR data have been acquired from three different environments, the Venice Lagoon in Italy, Morecambe Bay in England, and the Eden estuary in Scotland. LiDAR accuracy at each site has been evaluated using ground reference data acquired with differential GPS. A semi-automatic technique has been developed to extract tidal channel networks from LiDAR data either used alone or fused with aerial photography. While the resulting networks may require some correction, the procedure does allow network extraction over large areas using objective criteria and reduces fieldwork requirements. The networks extracted may subsequently be used in geomorphological analyses, for example to describe the drainage patterns induced by networks and to examine the rate of change of networks. Estimation of the heights of the low and sparse vegetation on marshes is being investigated by analysis of the statistical distribution of the measured LiDAR heights. Species having different mean heights may be separated using the first-order moments of the height distribution
Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids
To each linear code over a finite field we associate the matroid of its
parity check matrix. We show to what extent one can determine the generalized
Hamming weights of the code (or defined for a matroid in general) from various
sets of Betti numbers of Stanley-Reisner rings of simplicial complexes
associated to the matroid
Pilot study on the rhythmic variation in blood pressure and pulse rate using standard methods of time series analysis
Face-to-face: Social work and evil
The concept of evil continues to feature in public discourses and has been reinvigorated in some academic disciplines and caring professions. This article navigates social workers through the controversy surrounding evil so that they are better equipped to acknowledge, reframe or repudiate attributions of evil in respect of themselves, their service users or the societal contexts impinging upon both. A tour of the landscape of evil brings us face-to-face with moral, administrative, societal and metaphysical evils, although it terminates in an exhortation to cultivate a more metaphorical language. The implications for social work ethics, practice and education are also discussed
Irrigated greywater in an urban sub-division as a potential source of metals to soil, groundwater and surface water
Increased water demands in dry countries such as Australia, have led to increased adoption of various water reuse practices. Irrigation of greywater (all water discharged from the bathrooms, laundry and kitchen apart from toilet waste) is seen as a potential means of easing water demands; however, there is limited knowledge of how greywater irrigation impacts terrestrial and aquatic environments. This study compared four greywater irrigated residential lots to adjacent non-irrigated lots that acted as controls. Accumulation and potential impacts of metals in soil, groundwater and surface water, as a result of greywater irrigation, were assessed by comparing measured concentrations to national and international guidelines. Greywater increased concentrations of some metals in irrigated soil and resulted in As, B, Cr and Cu exceeding guidelines after only four years of irrigation. Movement of metals from the irrigation areas resulted in metal concentrations in groundwater (Al, As, Cr, Cu, Fe, Mn, Ni and Zn) and surface water (Cu, Fe and Zn) exceeding environmental quality guidelines again within four years. These results are unlikely to be universally applicable but indicate the need to consider metals in greywater in order to minimize potential adverse environmental effects from greywater irrigation
- …
