10,090 research outputs found

    Electronic ground states of Fe2+_2^+ and Co2+_2^+ as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy

    Full text link
    The 6Π^6\Pi electronic ground state of the Co2+_2^+ diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, 6Φ^6\Phi, 8Φ^8\Phi, and 8Γ^8\Gamma, for the electronic ground state of Fe2+_2^+ have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d3d transition elements cannot generally be assumed to be connected by a one-electron process

    Design of aircraft turbine fan drive gear transmission system

    Get PDF
    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity

    After-School Programs for High School Students: An Evaluation of After School Matters

    Get PDF
    Evaluates outcomes for teens in Chicago's After School Matters apprenticeship-like program, finding statistically significant benefits on some measures of youth development and reduced problem behaviors but not in job skills or school performance

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, Υ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when Υ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (π,0)(\pi,0) direction and their absence along the (π,π)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Continuous Time Quantum Monte Carlo method for fermions

    Get PDF
    We present numerically exact continuous-time Quantum Monte Carlo algorithm for fermions with a general non-local in space-time interaction. The new determinantal grand-canonical scheme is based on a stochastic series expansion for the partition function in the interaction representation. The method is particularly applicable for multi-band time-dependent correlations since it does not invoke the Hubbard-Stratonovich transformation. The test calculations for exactly solvable models as well results for the Green function and for the time-dependent susceptibility of the multi-band super-symmetric model with a spin-flip interaction are discussed.Comment: 10 pages, 7 Figure

    Phenomenology of the minimal supersymmetric U(1)BL×U(1)RU(1)_{B-L}\times U(1)_R extension of the standard model

    Full text link
    We discuss the minimal supersymmetric U(1)BL×U(1)RU(1)_{B-L}\times U(1)_R extension of the standard model. Gauge couplings unify as in the MSSM, even if the scale of U(1)BL×U(1)RU(1)_{B-L}\times U(1)_R breaking is as low as order TeV and the model can be embedded into an SO(10) grand unified theory. The phenomenology of the model differs in some important aspects from the MSSM, leading potentially to rich phenomenology at the LHC. It predicts more light Higgs states and the mostly left CP-even Higgs has a mass reaching easily 125 GeV, with no constraints on the SUSY spectrum. Right sneutrinos can be the lightest supersymmetric particle, changing all dark matter constraints on SUSY parameter space. The model has seven neutralinos and squark/gluino decay chains involve more complicated cascades than in the MSSM. We also discuss briefly low-energy and accelerator constraints on the model, where the most important limits come from recent ZZ' searches at the LHC and upper limits on lepton flavour violation.Comment: 46 pages, 11 figure

    Direct Observation of High-Spin States in Manganese Dimer and Trimer Cations by X-ray Magnetic Circular Dichroism Spectroscopy in an Ion Trap

    Full text link
    The electronic structure and magnetic moments of free Mn2+_2^+ and Mn3+_3^+ are characterized by 2p2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results show directly that localized magnetic moments of 5 μB\mu_B are created by 3d5(6S)3d^5 (^6\mathrm{S}) states at each ionic core, which are coupled in parallel to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly-occupied 4s4s derived orbital with an unpaired spin. This leads to total magnetic moments of 11 μB\mu_B for Mn2+_2^+ and 16 μB\mu_B for Mn3+_3^+, with no contribution of orbital angular momentum

    Orbital selective Mott transition in multi-band systems: slave-spin representation and dynamical mean-field theory

    Full text link
    We examine whether the Mott transition of a half-filled, two-orbital Hubbard model with unequal bandwidths occurs simultaneously for both bands or whether it is a two-stage process in which the orbital with narrower bandwith localizes first (giving rise to an intermediate `orbital-selective' Mott phase). This question is addressed using both dynamical mean-field theory, and a representation of fermion operators in terms of slave quantum spins, followed by a mean-field approximation (similar in spirit to a Gutzwiller approximation). In the latter approach, the Mott transition is found to be orbital-selective for all values of the Coulomb exchange (Hund) coupling J when the bandwidth ratio is small, and only beyond a critical value of J when the bandwidth ratio is larger. Dynamical mean-field theory partially confirms these findings, but the intermediate phase at J=0 is found to differ from a conventional Mott insulator, with spectral weight extending down to arbitrary low energy. Finally, the orbital-selective Mott phase is found, at zero-temperature, to be unstable with respect to an inter-orbital hybridization, and replaced by a state with a large effective mass (and a low quasiparticle coherence scale) for the narrower band.Comment: Discussion on the effect of hybridization on the OSMT has been extende

    Light Lepton Number Violating Sneutrinos and the Baryon Number of the Universe

    Get PDF
    Recent results of neutrino oscillation experiments point to a nonvanishing neutrino mass. Neutrino mass models favour Majorana-type neutrinos. In such circumstances it is natural that the supersymmetric counterpart of the neutrino, the sneutrino, bears also lepton number violating properties. On the other hand, the fact that the universe exhibits an asymmetry in the baryon and antibaryon numbers poses constraints on the extent of lepton number violation in the light sneutrino sector if the electroweak phase transition is second or weak first order. From the requirement that the Baryon Asymmetry of the Universe should not be washed out by sneutrino induced lepton number violating interactions and sphalerons below the critical temperature of the electroweak phase transition we find that the mass splitting of the light sneutrino mass states is compatible with the sneutrino Cold Dark Matter hypothesis only for heavy gauginos and opposite sign gaugino mass parameters.Comment: 13 pages, 4 figure
    corecore