45 research outputs found

    Information theory measures for the engineering validation of ground-motion simulations

    Get PDF
    This short communication introduces a quantitative approach for the engineering validation of ground-motion simulations based on information theory concepts and statistical hypothesis testing. Specifically, we use the Kullback-Leibler divergence to measure the similarity of the probability distributions of recorded and simulated ground-motion intensity measures (IMs). We demonstrate the application of the proposed validation approach to ground-motion simulations computed by using a variety of methods, including Graves and Pitarka hybrid broadband, the deterministic composite source model, and a stochastic white noise finite-fault model. Ground-motion IMs, acting as proxies for the (nonlinear) seismic response of more complex engineered systems, are considered herein to validate the considered ground-motion simulation methods. The list of considered IMs includes both spectral-shape and duration-related proxies, shown to be the optimal IMs in several probabilistic seismic demand models of different structural types, within the framework of performance-based earthquake engineering. The proposed validation exercise (1) can highlight the similarities and differences between simulated and recorded ground motions for a given simulation method and/or (2) allow the ranking of the performance of alternative simulation methods. The similarities between records and simulations should provide confidence in using the simulation method for engineering applications, while the discrepancies should help in improving the tested method for the generation of synthetic records

    Validation of hazard-compatible stochastic ground motion model modification techniques

    Get PDF
    An important consideration for the adoption of stochastic ground motion models in performance-based earthquake engineering applications is that the probability distribution of target intensity measures from the developed suites of time-histories is compatible with the prescribed hazard at the site and structure of interest. The authors have recently developed a computationally efficient framework to modify existing stochastic ground motion models to facilitate such a compatibility. For a given seismicity scenario, the framework identifies the modified stochastic ground motion model that can sufficiently match the prescribed hazard while maintaining similarity to regional physical ground motion model characteristics. This paper extends this effort through a validation study. Suites of recorded and stochastic ground motions, whose spectral acceleration statistics match the mean and variance of target spectra within a period range of interest, are utilized as input to perform response history analysis of inelastic single-degree-of-freedom case-study systems. The resultant engineering demand parameters distributions are then compared to assess the effect of the proposed modification

    Modification of stochastic ground motion models for matching target intensity measures

    Get PDF
    Stochastic ground motion models produce synthetic time‐histories by modulating a white noise sequence through functions that address spectral and temporal properties of the excitation. The resultant ground motions can be then used in simulation‐based seismic risk assessment applications. This is established by relating the parameters of the aforementioned functions to earthquake and site characteristics through predictive relationships. An important concern related to the use of these models is the fact that through current approaches in selecting these predictive relationships, compatibility to the seismic hazard is not guaranteed. This work offers a computationally efficient framework for the modification of stochastic ground motion models to match target intensity measures (IMs) for a specific site and structure of interest. This is set as an optimization problem with a dual objective. The first objective minimizes the discrepancy between the target IMs and the predictions established through the stochastic ground motion model for a chosen earthquake scenario. The second objective constraints the deviation from the model characteristics suggested by existing predictive relationships, guaranteeing that the resultant ground motions not only match the target IMs but are also compatible with regional trends. A framework leveraging kriging surrogate modeling is formulated for performing the resultant multi‐objective optimization, and different computational aspects related to this optimization are discussed in detail. The illustrative implementation shows that the proposed framework can provide ground motions with high compatibility to target IMs with small only deviation from existing predictive relationships and discusses approaches for selecting a final compromise between these two competing objectives

    Hazard-compatible modification of stochastic ground motion models

    Get PDF
    A computationally efficient framework is presented for modification of stochastic ground motion models to establish compatibility with the seismic hazard for specific seismicity scenarios and a given structure/site. The modification pertains to the probabilistic predictive models that relate the parameters of the ground motion model to seismicity/site characteristics. These predictive models are defined through a mean prediction and an associated variance, and both these properties are modified in the proposed framework. For a given seismicity scenario, defined for example by the moment magnitude and source-to-site distance, the conditional hazard is described through the mean and the dispersion of some structure-specific intensity measure(s). Therefore, for both the predictive models and the seismic hazard, a probabilistic description is considered, extending previous work of the authors that had examined description only through mean value characteristics. The proposed modification is defined as a bi-objective optimization. The first objective corresponds to comparison for a chosen seismicity scenario between the target hazard and the predictions established through the stochastic ground motion model. The second objective corresponds to comparison of the modified predictive relationships to the pre-existing ones that were developed considering regional data, and guarantees that the resultant ground motions will have features compatible with observed trends. The relative entropy is adopted to quantify both objectives, and a computational framework relying on kriging surrogate modeling is established for an efficient optimization. Computational discussions focus on the estimation of the various statistics of the stochastic ground motion model output needed for the entropy calculation

    A method for determining the suitability of schools as evacuation shelters and aid distribution hubs following disasters: case study from Cagayan de Oro, Philippines

    Get PDF
    Despite the controversy regarding their use, school buildings are often assigned as emergency evacuation shelters, temporary accommodation and aid distribution hubs following disasters. This paper presents a methodology to compare the relative suitability of different school buildings for these purposes by using the analytical hierarchy process to weight criteria based on the combined opinions of relevant experts and combine these with descriptive scores from surveyed buildings. The aggregated weights show that approximately equal weighting should be given to the hard characteristics (hazard at location and physical vulnerability) and soft characteristics (accessibility, communications, living environment, access to supplies). As well as immediate safety, conditions for inhabitation are important so that displaced persons are not discouraged from evacuating to shelters and shelter life is not detrimental to health and well-being. The study allows an optimal selection of school buildings used as shelters before and after a disaster and highlights where most improvement could be made with relatively little time and resources for both individual buildings and the whole study area. This method was applied to Cagayan de Oro in the Philippines, an area exposed to floods, windstorms and earthquakes, but can be adapted for other local contexts and building types. Among the 38 school buildings surveyed, we identified key areas for improvement as being insufficient pedestrian access for evacuation at night and for those with mobility constraints, and a lack of alternate spaces for evacuee activities leading to interference with education

    Hazard Compatible Stochastic Ground Motion Modelling

    Get PDF
    This paper discusses a computationally efficient framework for the hazard-compatible tuning of existing stochastic ground motion models. The tuning pertains to the modification of the probabilistic predictive relationships that relate the ground motion model parameters to seismicity characteristics, whereas the seismic hazard is quantified through ground motion prediction equations (GMPEs), which for a specified earthquake scenario and period range provide information for both the conditional mean and the dispersion (variability) of the resultant spectral accelerations. The proposed modification is defined as an optimization problem with a dual objective. The first objective corresponds to comparison for a chosen earthquake scenario between the regional conditional hazard and the predictions established through the stochastic ground motion model. The second objective corresponds to comparison of the new predictive relationships with the pre-existing predictive relationships, developed considering regional data. This second objective guarantees that the resultant ground motions not only match the regional hazard (objective one) but are also compatible with observed trends. The relative entropy is adopted to quantify both objectives since they are both related to comparison between probability distributions, and a computational framework relying on Kriging surrogate modeling is established for an efficient optimization

    Discarding IVF embryos: reporting on global practices

    Get PDF
    Purpose: To provide a global scale report on a representative sample of the clinical embryology community depicting the practice of discarding supernumerary IVF embryos. Methods: A web-based questionnaire titled “Anonymous questionnaire on embryo disposal practices” was designed in order to ensure anonymous participation of practicing clinical embryologists around the world. Results: During a data collection period of 8 months, 703 filled-in questionnaires from 65 countries were acquired. According to the data acquired, the majority of practitioners, dispose of embryos by placing them directly in a trash can strictly dedicated for embryo disposal for both fresh and frozen cycles (39% and 36.7% respectively). Moreover, 66.4% of practitioners discard the embryos separately—case by case—at different time points during the day. Over half of embryologists (54%) wait until day 6 to discard the surplus embryos, while 65.5% do not implement a specially allocated incubator space as a designated waiting area prior to disposal. The majority of 63.1% reported that this is a witnessed procedure. The vast majority of embryologists (93%) do not employ different protocols for different groups of patients. Nonetheless, 17.8% reported the request to perform a ceremony for these embryos. Assessing the embryologists’ perspective, 59.5% of participants stated that the embryology practice would benefit from a universally accepted and practiced protocol. Conclusion(s): This study uniquely provides insight into global embryo disposal practices and trends. Results highlight the divergence between reported practices, while indicating the significance on standardization of practice, with embryologists acknowledging the need for a universally accepted protocol implementation

    Comprehensive analysis of global research on human varicocele: a scientometric approach

    Get PDF
    Purpose: This study provides a comprehensive analysis of research trends on the etiology, mechanisms, potential risk factors, diagnosis, prognosis, surgical and non-surgical treatment of varicocele, and clinical outcomes before and after varicocele repair. Materials and Methods: Varicocele studies published between 1988 and 2020 were retrieved from the Scopus database on April 5, 2021. Original studies on human varicocele were included, irrespective of language. Retrieved articles were manually screened for inclusion in various sub-categories. Bibliometric data was subjected to scientometric analysis using descriptive statistics. Network, heat and geographic mapping were generated using relevant software. Results: In total, 1,943 original human studies on varicocele were published. These were predominantly from the northern hemisphere and developed countries, and published in journals from the United States and Germany. Network map analysis for countries showed several interconnected nodal points, with the USA being the largest, and Agarwal A. from Cleveland Clinic, USA, being a center point of worldwide varicocele research collaborations. Studies of adolescents were underrepresented compared with studies of adults. Studies on diagnostic and prognostic aspects of varicocele were more numerous than studies on varicocele prevalence, mechanistic studies and studies focusing on etiological and risk factors. Varicocele surgery was more investigated than non-surgical approaches. To evaluate the impact of varicocele and its treatment, researchers mainly analyzed basic semen parameters, although markers of seminal oxidative stress are being increasingly investigated in the last decade, while reproductive outcomes such as live birth rate were under-reported in the literature. Conclusions: This study analyzes the publication trends in original research on human varicocele spanning over the last three decades. Our analysis emphasizes areas for further exploration to better understand varicocele’s impact on men’s health and male fertility

    Impact of varicocele repair on semen parameters in infertile men: a systematic review and meta-analysis

    Get PDF
    Purpose: Despite the significant role of varicocele in the pathogenesis of male infertility, the impact of varicocele repair (VR) on conventional semen parameters remains controversial. Only a few systematic reviews and meta-analyses (SRMAs) have evaluated the impact of VR on sperm concentration, total motility, and progressive motility, mostly using a before-after analytic approach. No SRMA to date has evaluated the change in conventional semen parameters after VR compared to untreated controls. This study aimed to evaluate the effect of VR on conventional semen parameters in infertile patients with clinical varicocele compared to untreated controls. Materials and Methods: A literature search was performed using Scopus, PubMed, Embase, and Cochrane databases following the Population Intervention Comparison Outcome (PICOS) model (Population: infertile patients with clinical varicocele; Intervention: VR [any technique]; Comparison: infertile patients with clinical varicocele that were untreated; Outcome: sperm concentration, sperm total count, progressive sperm motility, total sperm motility, sperm morphology, and semen volume; Study type: randomized controlled trials and observational studies). Results: A total of 1,632 abstracts were initially assessed for eligibility. Sixteen studies were finally included with a total of 2,420 infertile men with clinical varicocele (1,424 patients treated with VR vs. 996 untreated controls). The analysis showed significantly improved post-operative semen parameters in patients compared to controls with regards to sperm concentration (standardized mean difference [SMD] 1.739; 95% CI 1.129 to 2.349; p<0.001; I2 =97.6%), total sperm count (SMD 1.894; 95% CI 0.566 to 3.222; p<0.05; I2 =97.8%), progressive sperm motility (SMD 3.301; 95% CI 2.164 to 4.437; p<0.01; I 2 =98.5%), total sperm motility (SMD 0.887; 95% CI 0.036 to 1.738; p=0.04; I2 =97.3%) and normal sperm morphology (SMD 1.673; 95% CI 0.876 to 2.470; p<0.05; I2 =98.5%). All the outcomes showed a high inter-study heterogeneity, but the sensitivity analysis showed that no study was sensitive enough to change these results. Publication bias was present only in the analysis of the sperm concentration and progressive motility. No significant difference was found for the semen volume (SMD 0.313; 95% CI -0.242 to 0.868; I2 =89.7%). Conclusions: This study provides a high level of evidence in favor of a positive effect of VR to improve conventional semen parameters in infertile men with clinical varicocele. To the best of our knowledge, this is the first SRMA to compare changes in conventional semen parameters after VR with changes in parameters of a control group over the same period. This is in contrast to other SRMAs which have compared semen parameters before and after VR, without reference to a control group. Our findings strengthen the available evidence and have a potential to upgrade professional societies’ practice recommendations favoring VR to improve conventional semen parameters in infertile men
    corecore