781 research outputs found

    Influence of optical aberrations in an atomic gyroscope

    Full text link
    In atom interferometry based on light-induced diffraction, the optical aberrations of the laser beam splitters are a dominant source of noise and systematic effect. In an atomic gyroscope, this effect is dramatically reduced by the use of two atomic sources. But it remains critical while coupled to fluctuations of atomic trajectories, and appears as a main source of noise to the long term stability. Therefore we measure these contributions in our setup, using cold Cesium atoms and stimulated Raman transitions

    Dynamics of the Wang-Landau algorithm and complexity of rare events for the three-dimensional bimodal Ising spin glass

    Full text link
    We investigate the performance of flat-histogram methods based on a multicanonical ensemble and the Wang-Landau algorithm for the three-dimensional +/- J spin glass by measuring round-trip times in the energy range between the zero-temperature ground state and the state of highest energy. Strong sample-to-sample variations are found for fixed system size and the distribution of round-trip times follows a fat-tailed Frechet extremal value distribution. Rare events in the fat tails of these distributions corresponding to extremely slowly equilibrating spin glass realizations dominate the calculations of statistical averages. While the typical round-trip time scales exponential as expected for this NP-hard problem, we find that the average round-trip time is no longer well-defined for systems with N >= 8^3 spins. We relate the round-trip times for multicanonical sampling to intrinsic properties of the energy landscape and compare with the numerical effort needed by the genetic Cluster-Exact Approximation to calculate the exact ground state energies. For systems with N >= 8^3 spins the simulation of these rare events becomes increasingly hard. For N >= 14^3 there are samples where the Wang-Landau algorithm fails to find the true ground state within reasonable simulation times. We expect similar behavior for other algorithms based on multicanonical sampling.Comment: 9 pages, 12 figure

    Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations

    Full text link
    We present an adaptive algorithm which optimizes the statistical-mechanical ensemble in a generalized broad-histogram Monte Carlo simulation to maximize the system's rate of round trips in total energy. The scaling of the mean round-trip time from the ground state to the maximum entropy state for this local-update method is found to be O([N log N]^2) for both the ferromagnetic and the fully frustrated 2D Ising model with N spins. Our new algorithm thereby substantially outperforms flat-histogram methods such as the Wang-Landau algorithm.Comment: 6 pages, 5 figure

    Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator

    Full text link
    Topological phases in frustrated quantum spin systems have fascinated researchers for decades. One of the earliest proposals for such a phase was the chiral spin liquid put forward by Kalmeyer and Laughlin in 1987 as the bosonic analogue of the fractional quantum Hall effect. Elusive for many years, recent times have finally seen a number of models that realize this phase. However, these models are somewhat artificial and unlikely to be found in realistic materials. Here, we take an important step towards the goal of finding a chiral spin liquid in nature by examining a physically motivated model for a Mott insulator on the Kagome lattice with broken time-reversal symmetry. We first provide a theoretical justification for the emergent chiral spin liquid phase in terms of a network model perspective. We then present an unambiguous numerical identification and characterization of the universal topological properties of the phase, including ground state degeneracy, edge physics, and anyonic bulk excitations, by using a variety of powerful numerical probes, including the entanglement spectrum and modular transformations.Comment: 9 pages, 9 figures; partially supersedes arXiv:1303.696

    Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions

    Get PDF
    We consider the effect of quenched spatial disorder on systems of interacting, pinned non-Abelian anyons as might arise in disordered Hall samples at filling fractions \nu=5/2 or \nu=12/5. In one spatial dimension, such disordered anyon models have previously been shown to exhibit a hierarchy of infinite randomness phases. Here, we address systems in two spatial dimensions and report on the behavior of Ising and Fibonacci anyons under the numerical strong-disorder renormalization group (SDRG). In order to manage the topology-dependent interactions generated during the flow, we introduce a planar approximation to the SDRG treatment. We characterize this planar approximation by studying the flow of disordered hard-core bosons and the transverse field Ising model, where it successfully reproduces the known infinite randomness critical point with exponent \psi ~ 0.43. Our main conclusion for disordered anyon models in two spatial dimensions is that systems of Ising anyons as well as systems of Fibonacci anyons do not realize infinite randomness phases, but flow back to weaker disorder under the numerical SDRG treatment.Comment: 12 pages, 12 figures, 1 tabl

    Performance Limitations of Flat Histogram Methods and Optimality of Wang-Landau Sampling

    Full text link
    We determine the optimal scaling of local-update flat-histogram methods with system size by using a perfect flat-histogram scheme based on the exact density of states of 2D Ising models.The typical tunneling time needed to sample the entire bandwidth does not scale with the number of spins N as the minimal N^2 of an unbiased random walk in energy space. While the scaling is power law for the ferromagnetic and fully frustrated Ising model, for the +/- J nearest-neighbor spin glass the distribution of tunneling times is governed by a fat-tailed Frechet extremal value distribution that obeys exponential scaling. We find that the Wang-Landau algorithm shows the same scaling as the perfect scheme and is thus optimal.Comment: 5 pages, 6 figure

    Two-dimensional quantum liquids from interacting non-Abelian anyons

    Full text link
    A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.Comment: 5 pages, 6 figure

    Optical spectroscopy of (La,Ca)14Cu24O41 spin ladders: comparison of experiment and theory

    Full text link
    Transmission and reflectivity of La_x Ca_14-x Cu_24 O_41 two-leg spin-1/2 ladders were measured in the mid-infrared regime between 500 and 12000 1/cm. This allows us to determine the optical conductivity sigma_1 directly and with high sensitivity. Here we show data for x=4 and 5 with the electrical field polarized parallel to the rungs (E||a) and to the legs (E||c). Three characteristic peaks are identified as magnetic excitations by comparison with two different theoretical calculations.Comment: 4 pages, 2 figures, submitted to SCES 200

    Breakdown of Luttinger's theorem in two-orbital Mott insulators

    Full text link
    An analysis of Luttinger's theorem shows that -- contrary to recent claims -- it is not valid for a generic Mott insulator. For a two-orbital Hubbard model with two electrons per site the crossover from a non-magnetic correlated insulating phase (Mott or Kondo insulator) to a band insulator is investigated. Mott insulating phases are characterized by poles of the self-energy and corresponding zeros in the Greens functions defining a ``Luttinger surface'' which is absent for band insulators. Nevertheless, the ground states of such insulators with two electrons per unit cell are adiabatically connected.Comment: published version, some formulations change
    corecore