10 research outputs found

    Non-Canonical WNT5A Signaling Through RYK Contributes to Aggressive Phenotype of the Rheumatoid Fibroblast-Like Synoviocytes

    Get PDF
    We hypothesized that WNT5A could contribute to the enhanced migration and invasiveness of rheumatoid arthritis fibroblast-like synoviocytes (RA FLS), which is one of the incompletely understood aspects of the RA FLS aggressive phenotype. This hypothesis is based on the previous evidence of a WNT5A role in both, RA and cell migration. Migration and invasion of RA FLS were assessed after incubation with recombinant Wnt5a (rWnt5a) or silencing of the endogenous WNT5A expression. The expression of WNT5A, WNT receptors, cytokines, chemokines, and metalloproteinases was quantified with RT-PCR. The WNT pathway was explored with gene silencing, antibody and pharmacological inhibition followed by migration assays and phosphoprotein western blots. Here, we reported that rWnt5a promoted migration and invasion of RA FLS, whereas knockdown of the endogenous WNT5A reduced them. These effects were specific to the RA FLS since they were not observed in FLS from osteoarthritis (OA) patients. Also, rWnt5a induced the expression of IL6, IL8, CCL2, CXCL5, MMP1, MMP3, MMP9, and MMP13 from baseline or potentiating the TNF induction, WNT5A signaling required the RYK receptor and was mediated through the WNT/Ca(2+) and the ROCK pathway. These pathways involved the RYK and ROCK dependent activation of the p38, ERK, AKT, and GSK3beta kinases, but not the activation of JNK. Together these findings indicate that WNT5A contributes to the enhanced migration and invasiveness of RA FLS through RYK and the specific activation of ROCK and downstream kinases

    Discovery of a warm, dusty giant planet around HIP 65426

    No full text
    Aims The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE’s unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. Methods We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the ~17 Myr old Lower Centaurus-Crux association. Results At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6–12 MJup, Teff = 1300–1600K and R = 1:5 ± 0:1 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4:0–5:0 with smaller radii (1:0–1:3 RJup). Conclusions Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.</p

    B. Sprachwissenschaft

    No full text

    Recent advances in liposome formulations for breast cancer therapeutics

    No full text

    Saliva- A Tool for Diagnosis in Periodontal Disease

    No full text
    corecore