605 research outputs found

    Design, Development and Temporal Evaluation of an MRI-Compatible In-Vitro Circulation Model Using a Compliant AAA Phantom

    Get PDF
    Biomechanical characterization of abdominal aortic aneurysms (AAA) has become commonplace in rupture risk assessment studies. However, its translation to the clinic has been greatly limited due to the complexity associated with its tools and their implementation. The unattainability of patient-specific tissue properties leads to the use of generalized population-averaged material models in finite element analyses, which adds a degree of uncertainty to the wall mechanics quantification. In addition, computational fluid dynamics modeling of AAA typically lacks the patient-specific inflow and outflow boundary conditions that should be obtained by non-standard of care clinical imaging. An alternative approach for analyzing AAA flow and sac volume changes is to conduct in vitro experiments in a controlled laboratory environment. We designed, built, and characterized quantitatively a benchtop flow-loop using a deformable AAA silicone phantom representative of a patient-specific geometry. The impedance modules, which are essential components of the flow-loop, were fine-tuned to ensure typical intra-sac pressure conditions. The phantom was imaged with a magnetic resonance imaging (MRI) scanner to acquire time-resolved images of the moving wall and the velocity field inside the sac. Temporal AAA sac volume changes lead to a corresponding variation in compliance throughout the cardiac cycle. The primary outcome of this work was the design optimization of the impedance elements, the quantitative characterization of the resistive and capacitive attributes of a compliant AAA phantom, and the exemplary use of MRI for flow visualization and quantification of the deformed AAA geometry

    Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein

    Get PDF
    Scald disease of barley, caused by the fungal pathogen Rhynchosporium secalis, is one of the most serious diseases of this crop worldwide. Disease control is achieved in part by deployment of major resistance (Rrs) genes in barley. However, in both susceptible and resistant barley plants, R. secalis is able to complete a symptomless infection cycle. To examine the R. secalis infection cycle, Agrobacterium tumefaciens-mediated transformation was used to generate R. secalis isolates expressing the green fluorescent protein or DsRed fluorescent protein, and that were virulent on an Rrs2 plant (cv. Atlas), but avirulent on an Rrs1 plant (cv. Atlas 46). Confocal laser scanning microscopy revealed that R. secalis infected the susceptible cultivar and formed an extensive hyphal network that followed the anticlinal cell walls of epidermal cells. In the resistant cultivar, hyphal development was more restricted and random in direction of growth. In contrast to earlier models of R. secalis infection, epidermal collapse was not observed until approximately 10 days post-inoculation in both cultivars. Sporulation of R. secalis was observed in both susceptible and resistant interactions. Observations made using the GFP-expressing isolate were complemented and confirmed using a combination of the fluorescent probes 5-chloromethylfluorescein diacetate and propidium iodide, in the non-transformed wild-type isolate. The findings will enable the different Rrs genes to be better characterized in the effect they exert on pathogen growth and may aid in identification of the most effective resistance

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Pathogen Populations Evolve to Greater Race Complexity in Agricultural Systems – Evidence from Analysis of Rhynchosporium secalis Virulence Data

    Get PDF
    Fitness cost associated with pathogens carrying unnecessary virulence alleles is the fundamental assumption for preventing the emergence of complex races in plant pathogen populations but this hypothesis has rarely been tested empirically on a temporal and spatial scale which is sufficient to distinguish evolutionary signals from experimental error. We analyzed virulence characteristics of ∼1000 isolates of the barley pathogen Rhynchosporium secalis collected from different parts of the United Kingdom between 1984 and 2005. We found a gradual increase in race complexity over time with a significant correlation between sampling date and race complexity of the pathogen (r20 = 0.71, p = 0.0002) and an average loss of 0.1 avirulence alleles (corresponding to an average gain of 0.1 virulence alleles) each year. We also found a positive and significant correlation between barley cultivar diversity and R. secalis virulence variation. The conditions assumed to favour complex races were not present in the United Kingdom and we hypothesize that the increase in race complexity is attributable to the combination of natural selection and genetic drift. Host resistance selects for corresponding virulence alleles to fixation or dominant frequency. Because of the weak fitness penalty of carrying the unnecessary virulence alleles, genetic drift associated with other evolutionary forces such as hitch-hiking maintains the frequency of the dominant virulence alleles even after the corresponding resistance factors cease to be used

    Characterisation of barley resistance to rhynchosporium on chromosome 6HS

    Get PDF
    Key Message: Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley. Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S₂ and S₃ lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.Max Coulter, Bianca Büttner, Kerstin Hofmann, Micha Bayer, Luke Ramsay, Günther Schweizer, Robbie Waugh, Mark E. Looseley, Anna Avrov

    The basic physics of the binary black hole merger GW150914

    Get PDF
    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 M⊙, still orbited each other as close as ∼350 km apart and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves

    Upper Limits on the Rates of Binary Neutron Star and Neutron-Star—Black-Hole Mergers from Advanced Ligo’s First Observing Run

    Get PDF
    We report here the non-detection of gravitational waves from the merger of binary neutron star systems and neutron-star–black-hole systems during the first observing run of Advanced LIGO. In particular we searched for gravitational wave signals from binary neutron star systems with component masses ∈ [1,3] M_⊙ and component dimensionless spins < 0.05. We also searched for neutron-star–black-hole systems with the same neutron star parameters, black hole mass ∈ [2,99] M_⊙ and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems, and find that they could have detected the merger of binary neutron star systems with component mass distributions of 1.35 ± 0.13M_⊙ at a volume-weighted average distance of ~ 70 Mpc, and for neutron-star–black-hole systems with neutron star masses of 1.4M_⊙ and black hole masses of at least 5M_⊙, a volume-weighted average distance of at least ~ 110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc^(-3) yr^(-1) for binary-neutron star systems and less than 3,600 Gpc^(-3) yr^(-1) for neutron-star–black-hole systems. We discuss the astrophysical implications of these results, which we find to be in tension with only the most optimistic predictions. However, we find that if no detection of neutron-star binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of 10^(+20)_(-7) Gpc^(-3) yr^(-1) short gamma ray bursts beamed towards the Earth and assuming that all short gamma ray bursts have binary-neutron-star (neutron-star–black-hole) progenitors we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2.3^(+1.7º)_(-1.1) (4.3^(+3.1º)_(-1.9))
    corecore