93 research outputs found

    Novel strategies enhancing endodontic disinfection: antibacterial biodegradable calcium hydroxide nanoparticles in an ex vivo model.

    Get PDF
    Due to the high failure rates associated to endodontic disinfection, this study aimed to investigate the antibacterial properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with Ca(OH)2 for endodontic disinfection procedures. Ca(OH)2 NPs production and physicochemical characterization were carried out as well as multiple antibacterial tests using three bacterial strains and an ex vivo model of endodontic infection with extracted human teeth. Agar diffusion test and broth dilution determined the inhibition growth zones (n=5) and the minimal inhibitory concentration (MIC, n=5), respectively. Cell viability was assessed using Live/Dead staining with confocal microscopy (n=5). Data was analysed using ANOVA followed by post-hoc analysis. After 24 hours of incubation, Ca(OH)₂ NPs demonstrated a MIC of 10 µg/mL for Porphyromonas gingivalis (p<0.001) and Enterococcus faecalis and 5 µg/mL for Fusobacterium nucleatum (p<0.001). Although the agar diffusion test did not exhibit any inhibition for Ca(OH)2 nor for Ca(OH)₂ NPs area probably due to the buffering effect of the agar medium. However, the antibacterial capacity was confirmed in an ex vivo model, where instrumentalized teeth were infected with Enterococcus Faecalis and treated after 28 days of culture. A significant reduction in bacterial metabolic activity was confirmed for Ca(OH)2 NPs (40% reduction with a single dose) and confirmed by Live/Dead staining. In conclusion, Ca(OH)₂-loaded PLGA NPs present promising antibacterial efficacy for endodontic disinfection procedures

    Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors.

    Get PDF
    The etiology and the molecular basis of lung adenocarcinomas (LuADs) in nonsmokers are currently unknown. Furthermore, the scarcity of available primary cultures continues to hamper our biological understanding of non-smoking-related lung adenocarcinomas (NSK-LuADs). We established patient-derived cancer cell (PDC) cultures from metastatic NSK-LuADs, including two pairs of matched EGFR-mutant PDCs before and after resistance to tyrosine kinase inhibitors (TKIs), and then performed whole-exome and RNA sequencing to delineate their genomic architecture. For validation, we analyzed independent cohorts of primary LuADs. In addition to known non-smoker-associated alterations (e.g. RET, ALK, EGFR, and ERBB2), we discovered novel fusions and recurrently mutated genes, including ATF7IP, a regulator of gene expression, that was inactivated in 5% of primary LuAD cases. We also found germline mutations at dominant familiar-cancer genes, highlighting the importance of genetic predisposition in the origin of a subset of NSK-LuADs. Furthermore, there was an over-representation of inactivating alterations at RB1, mostly through complex intragenic rearrangements, in treatment-naive EGFR-mutant LuADs. Three EGFR-mutant and one EGFR-wild-type tumors acquired resistance to EGFR-TKIs and chemotherapy, respectively, and histology on re-biopsies revealed the development of small-cell lung cancer/squamous cell carcinoma (SCLC/LuSCC) transformation. These features were consistent with RB1 inactivation and acquired EGFR-T790M mutation or FGFR3-TACC3 fusion in EGFR-mutant tumors. We found recurrent alterations in LuADs that deserve further exploration. Our work also demonstrates that a subset of NSK-LuADs arises within cancer-predisposition syndromes. The preferential occurrence of RB1 inactivation, via complex rearrangements, found in EGFR-mutant tumors appears to favor SCLC/LuSCC transformation under growth-inhibition pressures. Thus RB1 inactivation may predict the risk of LuAD transformation to a more aggressive type of lung cancer, and may need to be considered as a part of the clinical management of NSK-LuADs patients.This work was supported by the Fundacion Cientifica Asociacion Española Contra el Cancer-AECC (grant number GCB14142170MONT) to LMM, MS-C, and EF; the Spanish Ministry of Economy and Competitivity-MINECO (grant number SAF-2017-82186R to MS-C; Rio Hortega-CM17/00180 to MS; PROYBAR17005NADA to EN); the Health Institute Carlos III-ISCIII, Fondo Europeo de Desarrollo Regional-FEDER (grant Number PT13/0001/0044, PT17/0009/0019, PI16 01821); the Government of Navarra (grant number DIANA project); and the Ramon Areces Foundation (no grant number is applicable) to LMM and RP.S

    Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome in Spain: Clinical and Genetic Characterization

    Get PDF
    Simple Summary Hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome is a very rare hereditary disorder characterized by cutaneous leiomyomas (CLMs), uterine leiomyomas (ULMs), renal cysts (RCys) and renal cell cancer (RCC), with no data on its prevalence worldwide. No genotype-phenotype associations have been described. The aim of our study was to describe the genotypic and phenotypic features of the largest series of patients with HLRCC from Spain reported to date. Of 27 FH germline pathogenic variants, 12 were not previously reported in databases. Patients with missense pathogenic variants showed higher frequencies of CLMs, ULMs and RCys, than those with loss-of-function variants. The frequency of RCCs (10.9%) was lower than those reported in the previously published series. Hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC) is a very rare hereditary disorder characterized by cutaneous leiomyomas (CLMs), uterine leiomyomas (ULMs), renal cysts (RCys) and renal cell cancers (RCCs). We aimed to describe the genetics, clinical features and potential genotype-phenotype associations in the largest cohort of fumarate hydratase enzyme mutation carriers known from Spain using a multicentre, retrospective study of individuals with a genetic or clinical diagnosis of HLRCC. We collected clinical information from medical records, analysed genetic variants and looked for genotype-phenotype associations. Analyses were performed using R 3.6.0. software. We included 197 individuals: 74 index cases and 123 relatives. CLMs were diagnosed in 65% of patients, ULMs in 90% of women, RCys in 37% and RCC in 10.9%. Twenty-seven different pathogenic variants were detected, 12 (44%) of them not reported previously. Patients with missense pathogenic variants showed higher frequencies of CLMs, ULMs and RCys, than those with loss-of-function variants (p = 0.0380, p = 0.0015 and p = 0.024, respectively). This is the first report of patients with HLRCC from Spain. The frequency of RCCs was lower than those reported in the previously published series. Individuals with missense pathogenic variants had higher frequencies of CLMs, ULMs and RCys

    Biological basis of extensive pleiotropy between blood traits and cancer risk

    Full text link
    Background: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. Methods: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. Results: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. Conclusions: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk

    Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the <it>SLX4 </it>gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of <it>SLX4 </it>in German or Byelorussian familial cases of breast cancer without detected mutations in <it>BRCA1 </it>or <it>BRCA2 </it>has been completed, with globally negative results.</p> <p>Methods</p> <p>The genomic region of <it>SLX4</it>, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of <it>BRCA1 </it>or <it>BRCA2 </it>mutations.</p> <p>Results</p> <p>This mutational analysis revealed extensive genetic variation of <it>SLX4</it>, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them.</p> <p>Conclusions</p> <p>Overall, while the results of this study do not identify clearly pathogenic mutations of <it>SLX4 </it>contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.</p

    Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Single immune checkpoint blockade in advanced neuroendocrine neoplasms (NENs) shows limited efficacy; dual checkpoint blockade may improve treatment activity. Dune (NCT03095274) is a non-randomized controlled multicohort phase II clinical trial evaluating durvalumab plus tremelimumab activity and safety in advanced NENs. This study included 123 patients presenting between 2017 and 2019 with typical/atypical lung carcinoids (Cohort 1), G1/2 gastrointestinal (Cohort 2), G1/2 pancreatic (Cohort 3) and G3 gastroenteropancreatic (GEP) (Cohort 4) NENs; who progressed to standard therapies. Patients received 1500 mg durvalumab and 75 mg tremelimumab for up to 13 and 4 cycles (every 4 weeks), respectively. The primary objective was the 9-month clinical benefit rate (CBR) for cohorts 1-3 and 9-month overall survival (OS) rate for Cohort 4. Secondary endpoints included objective response rate, duration of response, progression-free survival according to irRECIST, overall survival, and safety. Correlation of PD-L1 expression with efficacy was exploratory. The 9-month CBR was 25.9%/35.5%/25% for Cohorts 1, 2, and 3 respectively. The 9-month OS rate for Cohort 4 was 36.1%, surpassing the futility threshold. Benefit in Cohort 4 was observed regardless of differentiation and Ki67 levels. PD-L1 combined scores did not correlate with treatment activity. Safety profile was consistent with that of prior studies. In conclusion, durvalumab plus tremelimumab is safe in NENs and shows modest survival benefit in G3 GEP-NENs; with one-third of these patients experiencing a prolonged OS.This work was supported by the Grupo Español de Tumores Neuroendocrinos y Endocrinos (GETNE).Peer reviewe

    Evaluation of the XRCC1 gene as a phenotypic modifier in BRCA1/2 mutation carriers. Results from the consortium of investigators of modifiers of BRCA1/BRCA2

    Get PDF
    Item does not contain fulltextBACKGROUND: Single-nucleotide polymorphisms (SNPs) in genes involved in DNA repair are good candidates to be tested as phenotypic modifiers for carriers of mutations in the high-risk susceptibility genes BRCA1 and BRCA2. The base excision repair (BER) pathway could be particularly interesting given the relation of synthetic lethality that exists between one of the components of the pathway, PARP1, and both BRCA1 and BRCA2. In this study, we have evaluated the XRCC1 gene that participates in the BER pathway, as phenotypic modifier of BRCA1 and BRCA2. METHODS: Three common SNPs in the gene, c.-77C>T (rs3213245) p.Arg280His (rs25489) and p.Gln399Arg (rs25487) were analysed in a series of 701 BRCA1 and 576 BRCA2 mutation carriers. RESULTS: An association was observed between p.Arg280His-rs25489 and breast cancer risk for BRCA2 mutation carriers, with rare homozygotes at increased risk relative to common homozygotes (hazard ratio: 22.3, 95% confidence interval: 14.3-34, P<0.001). This association was further tested in a second series of 4480 BRCA1 and 3016 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. CONCLUSIONS AND INTERPRETATION: No evidence of association was found when the larger series was analysed which lead us to conclude that none of the three SNPs are significant modifiers of breast cancer risk for mutation carriers

    Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores

    Get PDF
    PurposeBRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigatedfor the first time to our knowledgeassociations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/2 mutations and implications for cancer risk prediction.Materials and MethodsWe genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights.ResultsIn male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 x 10(-6)). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 x 10(-9)). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively.ConclusionPRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.Peer reviewe

    Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.

    Get PDF
    BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.UK funding includes Cancer Research UK and NIH.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13058-016-0718-
    corecore