781 research outputs found
Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study
AIMS/HYPOTHESIS: Vasopressin plays a role in osmoregulation, glucose homeostasis and inflammation. Therefore, plasma copeptin, the stable C-terminal portion of the precursor of vasopressin, has strong potential as a biomarker for the cardiometabolic syndrome and diabetes. Previous results were contradictory, which may be explained by differences between men and women in responsiveness of the vasopressin system. The aim of this study was to evaluate the usefulness of copeptin for prediction of future type 2 diabetes in men and women separately. METHODS: From the Prevention of Renal and Vascular Endstage Disease (PREVEND) study, 4,063 women and 3,909 men without diabetes at baseline were included. A total of 208 women and 288 men developed diabetes during a median follow-up of 7.7 years. RESULTS: In multivariable-adjusted models, we observed a stronger association of copeptin with risk of future diabetes in women (OR 1.49 [95% CI 1.24, 1.79]) than in men (OR 1.01 [95% CI 0.85, 1.19]) (p (interaction) < 0.01). The addition of copeptin to the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) clinical model improved the discriminative value (C-statistic,+0.007, p = 0.02) and reclassification (integrated discrimination improvement [IDI] = 0.004, p < 0.01) in women. However, we observed no improvement in men. The additive value of copeptin in women was maintained when other independent predictors, such as glucose, high sensitivity C-reactive protein (hs-CRP) and 24 h urinary albumin excretion (UAE), were included in the model. CONCLUSIONS/INTERPRETATION: The association of plasma copeptin with the risk of developing diabetes was stronger in women than in men. Plasma copeptin alone, and along with existing biomarkers (glucose, hs-CRP and UAE), significantly improved the risk prediction for diabetes in women
COPD diagnosis related to different guidelines and spirometry techniques
The aim was to compare the diagnosis of COPD among smokers according to different international guidelines and to compare the outcome when using slow (SVC) and forced vital capacity (FVC)
A chromatin-bound kinase, ERK8, protects genomic integrity by inhibiting HDM2-mediated degradation of the DNA clamp PCNA
ERK8 prevents genome instability by blocking the association of the HDM2 E3 ubiquitin ligase with the genome-protecting protein PCNA
Kansei engineering as a tool for the design of in-vehicle rubber keypads
Manufacturers are currently adopting a consumer-centered philosophy which poses the challenge of developing differentiating products in a context of constant innovation and competitiveness. To merge both function and experience in a product, it is necessary to understand customers’ experience when interacting with interfaces. This paper describes the use of Kansei methodology as a tool to evaluate the subjective perception of rubber keypads. Participants evaluated eleven rubber keys with different values of force, stroke and snap ratio, according to seven Kansei words ranging from “pleasantness” to “click- iness”. Evaluation data was collected using the semantic differential technique and compared with data from the physical properties of the keys. Kansei proved to be a robust method to evaluate the qualitative traits of products, and a new physical parameter for the tactile feel of “clickiness” is suggested, having obtained better results than the commonly used Snap Ratio. It was possible to establish very strong relations between Kansei words and all physical properties. This approach will result in guidance to the industry for the design of in-vehicle rubber keypads with user-centered concerns.Projecto HMIExcel - I&D crítica em torno do ciclo de desenvolvimento e produção de soluções multimedia avançadas para automovel/Critical R&D no enquadramento do ciclo de desenvolvimento e produção de soluções multimédia avançadas para automóvel (AICEP-PIN-HMIEXCEL)
Intrinsic activity in the fly brain gates visual information during behavioral choices
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic: CHEST Expert Panel Report
Background: The risks from potential exposure to coronavirus disease 2019 (COVID-19), and resource reallocation that has occurred to combat the pandemic, have altered the balance of benefits and harms that informed current (pre-COVID-19) guideline recommendations for lung cancer screening and lung nodule evaluation. Consensus statements were developed to guide clinicians managing lung cancer screening programs and patients with lung nodules during the COVID-19 pandemic. /
Methods: An expert panel of 24 members, including pulmonologists (n = 17), thoracic radiologists (n = 5), and thoracic surgeons (n = 2), was formed. The panel was provided with an overview of current evidence, summarized by recent guidelines related to lung cancer screening and lung nodule evaluation. The panel was convened by video teleconference to discuss and then vote on statements related to 12 common clinical scenarios. A predefined threshold of 70% of panel members voting agree or strongly agree was used to determine if there was a consensus for each statement. Items that may influence decisions were listed as notes to be considered for each scenario. /
Results: Twelve statements related to baseline and annual lung cancer screening (n = 2), surveillance of a previously detected lung nodule (n = 5), evaluation of intermediate and high-risk lung nodules (n = 4), and management of clinical stage I non–small-cell lung cancer (n = 1) were developed and modified. All 12 statements were confirmed as consensus statements according to the voting results. The consensus statements provide guidance about situations in which it was believed to be appropriate to delay screening, defer surveillance imaging of lung nodules, and minimize nonurgent interventions during the evaluation of lung nodules and stage I non–small-cell lung cancer. /
Conclusions: There was consensus that during the COVID-19 pandemic, it is appropriate to defer enrollment in lung cancer screening and modify the evaluation of lung nodules due to the added risks from potential exposure and the need for resource reallocation. There are multiple local, regional, and patient-related factors that should be considered when applying these statements to individual patient care
Protecting the environment from psychoactive drugs: Problems for regulators illustrated by the possible effects of tramadol on fish behaviour
© 2019 The Authors. There is concern that psychoactive drugs present in the aquatic environment could affect the behaviour of fish, and other organisms, adversely. There is considerable experimental support for this concern, although the literature is not consistent. To investigate why, fish were exposed to three concentrations of the synthetic opiate tramadol for 23–24 days, and their anxiolytic behaviour in a novel tank diving test was assessed both before and after exposure. The results were difficult to interpret. The positive control drug, the anti-depressant fluoxetine, produced the expected results: exposed fish explored the novel tank more, and swam more slowly while doing so. An initial statistical analysis of the results provided relatively weak support for the conclusion that both the low and high concentrations of tramadol affected fish behaviour, but no evidence that the intermediate concentration did. To gain further insight, UK and Japanese experts in ecotoxicology were asked for their independent opinions on the data for tramadol. These were highly valuable. For example, about half the experts replied that a low concentration of a chemical can cause effects that higher concentrations do not, although a similar number did not believe this was possible. Based both on the inconclusive effects of tramadol on the behaviour of the fish and the very varied opinions of experts on the correct interpretation of those inconclusive data, it is obvious that more research on the behavioural effects of tramadol, and probably all other psychoactive drugs, on aquatic organisms is required before any meaningful risk assessments can be conducted. The relevance of these findings may apply much more widely than just the environmental risk assessment of psychoactive drugs. They suggest that much more rigorous training of research scientists and regulators is probably required if consensus decisions are to be reached that adequately protect the environment from chemicals.Ecotoxicology Research Group, Brunel University London funded the fish experiments. We would also like to thank Dr. Matt Winter, University
of Exeter, for his support with the behavioural analysis. This study was
also supported by the Ministry of Education, Culture, Sports, Science
and Technology, Japan (MEXT) to a project on Joint Usage/Research
Centre – Leading Academia in Marine and Environment Pollution
Research (LaMer), and Japan Society for the Promotion of Science (JSPS) Grants-in-Aid (KAKENHI) for JSPS Fellows (JP26·2800), Scientific Research (A) (JP25257403), Scientific Research (A) (JP16H01784), and Young Scientists (JP18K18206)
Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions
Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/
- …