54,600 research outputs found
Quantum gauge boson propagators in the light front
Gauge fields in the light front are traditionally addressed via the
employment of an algebraic condition in the Lagrangian density,
where is the gauge field (Abelian or non-Abelian) and is the
external, light-like, constant vector which defines the gauge proper. However,
this condition though necessary is not sufficient to fix the gauge completely;
there still remains a residual gauge freedom that must be addressed
appropriately. To do this, we need to define the condition with . The implementation of this
condition in the theory gives rise to a gauge boson propagator (in momentum
space) leading to conspicuous non-local singularities of the type where . These singularities must be conveniently
treated, and by convenient we mean not only matemathically well-defined but
physically sound and meaningfull as well. In calculating such a propagator for
one and two noncovariant gauge bosons those singularities demand from the
outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We
show that the implementation of the ML prescription does not remove certain
pathologies associated with zero modes. However we present a causal,
singularity-softening prescription and show how to keep causality from being
broken without the zero mode nuisance and letting only the propagation of
physical degrees of freedom.Comment: 10 page
The light-cone gauge without prescriptions
Feynman integrals in the physical light-cone gauge are harder to solve than
their covariant counterparts. The difficulty is associated with the presence of
unphysical singularities due to the inherent residual gauge freedom in the
intermediate boson propagators constrained within this gauge choice. In order
to circumvent these non-physical singularities, the headlong approach has
always been to call for mathematical devices --- prescriptions --- some
successful ones and others not so much so. A more elegant approach is to
consider the propagator from its physical point of view, that is, an object
obeying basic principles such as causality. Once this fact is realized and
carefully taken into account, the crutch of prescriptions can be avoided
altogether. An alternative third approach, which for practical computations
could dispense with prescriptions as well as prescinding the necessity of
careful stepwise watching out of causality would be of great advantage. And
this third option is realizable within the context of negative dimensions, or
as it has been coined, negative dimensional integration method, NDIM for short.Comment: 9 pages, PTPTeX (included
Feynman integrals with tensorial structure in the negative dimensional integration scheme
Negative dimensional integration method (NDIM) is revealing itself as a very
useful technique for computing Feynman integrals, massless and/or massive,
covariant and non-covariant alike. Up to now, however, the illustrative
calculations done using such method are mostly covariant scalar integrals,
without numerator factors. Here we show how those integrals with tensorial
structures can also be handled with easiness and in a straightforward manner.
However, contrary to the absence of significant features in the usual approach,
here the NDIM also allows us to come across surprising unsuspected bonuses. In
this line, we present two alternative ways of working out the integrals and
illustrate them by taking the easiest Feynman integrals in this category that
emerges in the computation of a standard one-loop self-energy diagram. One of
the novel and as yet unsuspected bonus is that there are degeneracies in the
way one can express the final result for the referred Feynman integral.Comment: 9 pages, revtex, no figure
Negative dimensional approach for scalar two-loop three-point and three-loop two-point integrals
The well-known -dimensional Feynman integrals were shown, by Halliday and
Ricotta, to be capable of undergoing analytic continuation into the domain of
negative values for the dimension of space-time. Furthermore, this could be
identified with Grassmannian integration in positive dimensions. From this
possibility follows the concept of negative dimensional integration for loop
integrals in field theories. Using this technique, we evaluate three two-loop
three-point scalar integrals, with five and six massless propagators, with
specific external kinematic configurations (two legs on-shell), and four
three-loop two-point scalar integrals. These results are given for arbitrary
exponents of propagators and dimension, in Euclidean space, and the particular
cases compared to results published in the literature.Comment: 6 pages, 7 figures, Revte
Characters in Conformal Field Theories from Thermodynamic Bethe Ansatz
We propose a new -series formula for a character of parafermion conformal
field theories associated to arbitrary non-twisted affine Lie algebra
. We show its natural origin from a thermodynamic Bethe ansatz
analysis including chemical potentials.Comment: 12 pages, harvmac, 1 postscript figure file, (some confusion on PF
Hilbert space was modified) HUTP-92/A06
Clustering of Far-Infrared Galaxies in the AKARI All-Sky Survey
We present the first measurement of the angular two-point correlation
function for AKARI 90-m point sources, detected outside of the Milky Way
plane and other regions characterized by high Galactic extinction, and
categorized as extragalactic sources according to our far-infrared-color based
criterion (Pollo et al. 2010). This is the first measurement of the large-scale
angular clustering of galaxies selected in the far-infrared after IRAS
measurements. Although a full description of clustering properties of these
galaxies will be obtained by more detailed studies, using either spatial
correlation function, or better information about properties and at least
photometric redshifts of these galaxies, the angular correlation function
remains the first diagnostics to establish the clustering properties of the
catalog and observed galaxy population. We find a non-zero clustering signal in
both hemispheres extending up to degrees, without any significant
fluctuations at larger scales. The observed correlation function is well fitted
by a power law function. The notable differences between a northern and
southern hemisphere are found, which can be probably attributed to the
photometry problems and point out to a necessity of performing a better
calibration in the data from southern hemisphere.Comment: 6 pages, 6 figures, accepted for publication in Earth, Planets, and
Spac
- …