172 research outputs found
Ambiguities in statistical calculations of nuclear fragmentation
The concept of freeze out volume used in many statistical approaches for
disassembly of hot nuclei leads to ambiguities. The fragmentation pattern and
the momentum distribution (temperature) of the emanated fragments are
determined by the phase space at the freeze-out volume where the interaction
among the fragments is supposedly frozen out. However, to get coherence with
the experimental momentum distribution of the charged particles, one introduces
Coulomb acceleration beyond this freeze-out. To be consistent, we investigate
the effect of the attractive nuclear force beyond this volume and find that the
possible recombination of the fragments alters the physical observables
significantly casting doubt on the consistency of the statistical model.Comment: 11 pages+3 figure
True ternary fission of superheavy nuclei
We found that a true ternary fission with formation of a heavy third fragment
(a new type of radioactivity) is quite possible for superheavy nuclei due to
the strong shell effects leading to a three-body clusterization with the two
doubly magic tin-like cores. The simplest way to discover this phenomenon in
the decay of excited superheavy nuclei is a detection of two tin-like clusters
with appropriate kinematics in low-energy collisions of medium mass nuclei with
actinide targets. The three-body quasi-fission process could be even more
pronounced for giant nuclear systems formed in collisions of heavy actinide
nuclei. In this case a three-body clusterization might be proved experimentally
by detection of two coincident lead-like fragments in low-energy U+U
collisions.Comment: 4 pages, 7 figure
Dynamical restriction for a growing neck due to mass parameters in a dinuclear system
Mass parameters for collective variables of a dinuclear system and strongly
deformed mononucleus are microscopically formulated with the linear response
theory making use of the width of single particle states and the
fluctuation-dissipation theorem. For the relative motion of the nuclei and for
the degree of freedom describing the neck between the nuclei, we calculate mass
parameters with basis states of the adiabatic and diabatic two-center shell
model. Microscopical mass parameters are found larger than the ones obtained
with the hydrodynamical model and give a strong hindrance for a melting of the
dinuclear system along the internuclear distance into a compound system.
Therefore, the dinuclear system lives a long time enough comparable to the
reaction time for fusion by nucleon transfer. Consequences of this effect for
the complete fusion process are discussed.Comment: 22 pages, 7 figures, submitted to Nucl.Phys.
Equilibration in the time-dependent Hartree-Fock approach probed with the Wigner distribution function
Calculating the Wigner distribution function in the reaction plane, we are
able to probe the phase-space behavior in time-dependent Hartree-Fock during a
heavy-ion collision. We compare the Wigner distribution function with the
smoothed Husimi distribution function. Observables are defined to give a
quantitative measure for local and global equilibration. We present different
reaction scenarios by analyzing central and non-central and
collisions. It is shown that the initial phase-space
volumes of the fragments barely merge. The mean values of the observables are
conserved in fusion reactions and indicate a "memory effect" in time-dependent
Hartree-Fock. We observe strong dissipation but no evidence for complete
equilibration.Comment: 12 pages, 10 figure
On the nature of nuclear dissipation, as a hallmark for collective dynamics at finite excitation
We study slow collective motion of isoscalar type at finite excitation. The
collective variable is parameterized as a shape degree of freedom and the mean
field is approximated by a deformed shell model potential. We concentrate on
situations of slow motion, as guaranteed, for instance, by the presence of a
strong friction force, which allows us to apply linear response theory. The
prediction for nuclear dissipation of some models of internal motion are
contrasted. They encompass such opposing cases as that of pure independent
particle motion and the one of "collisional dominance". For the former the wall
formula appears as the macroscopic limit, which is here simulated through
Strutinsky smoothing procedures. It is argued that this limit hardly applies to
the actual nuclear situation. The reason is found in large collisional damping
present for nucleonic dynamics at finite temperature . The level structure
of the mean field as well as the -dependence of collisional damping
determine the -dependence of friction. Two contributions are isolated, one
coming from real transitions, the other being associated to what for infinite
matter is called the "heat pole". The importance of the latter depends strongly
on the level spectrum of internal motion, and thus is very different for
"adiabatic" and "diabatic" situations, both belonging to different degrees of
"ergodicity".Comment: 50 pages plus 10 figures, uuencoded postscript file
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
Entrance-channel Mass-asymmetry Dependence of Compound-nucleus Formation Time in Light Heavy-ion Reactions
The entrance-channel mass-asymmetry dependence of the compound nucleus
formation time in light heavy-ion reactions has been investigated within the
framework of semiclassical dissipative collision models. the model calculations
have been succesfully applied to the formation of the Ar compound
nucleus as populated via the Be+Si, B+Al,
C+Mg and F+F entrance channels. The shape evolution
of several other light composite systems appears to be consistent with the
so-called "Fusion Inhibition Factor" which has been experimentally observed. As
found previously in more massive systems for the fusion-evaporation process,
the entrance-channel mass-asymmetry degree of freedom appears to determine the
competition between the different mechanisms as well as the time scales
involved.Comment: 12 pages, 3 Figures available upon request, Submitted at Phys. Rev.
Modelling of compound nucleus formation in fusion of heavy nuclei
A new model that includes the time-dependent dynamics of the single-particle
(s.p.) motion in conjunction with the macroscopic evolution of the system is
proposed for describing the compound nucleus (CN) formation in fusion of heavy
nuclei. The diabaticity initially keeps the entrance system around its contact
configuration, but the gradual transition from the diabatic to the adiabatic
potential energy surface (PES) leads to fusion or quasifission. Direct
measurements of the probability for CN formation are crucial to discriminate
between the current models.Comment: 4 pages,2 figures,1 table, Submitted to PR
Characterization of Landau-Zener Transitions in Systems with Complex Spectra
This paper is concerned with the study of one-body dissipation effects in
idealized models resembling a nucleus. In particular, we study the quantum
mechanics of a free particle that collides elastically with the slowly moving
walls of a Bunimovich stadium billiard. Our results are twofold. First, we
develop a method to solve in a simple way the quantum mechanical evolution of
planar billiards with moving walls. The formalism is based on the {\it scaling
method} \cite{ver} which enables the resolution of the problem in terms of
quantities defined over the boundary of the billiard. The second result is
related to the quantum aspects of dissipation in systems with complex spectra.
We conclude that in a slowly varying evolution the energy is transferred from
the boundary to the particle through LandauZener transitions.Comment: 24 pages (including 7 postcript figures), Revtex. Submitted to PR
Isotope thermometery in nuclear multifragmentation
A systematic study of the effect of fragmentfragment interaction, quantum
statistics, -feeding and collective flow is made in the extraction of
the nuclear temperature from the double ratio of the isotopic yields in the
statistical model of one-step (Prompt) multifragmentation. Temperature is also
extracted from the isotope yield ratios generated in the sequential
binary-decay model. Comparison of the thermodynamic temperature with the
extracted temperatures for different isotope ratios show some anomaly in both
models which is discussed in the context of experimentally measured caloric
curves.Comment: uuencoded gzipped file containing 20 pages of text in REVTEX format
and 12 figures (Postscript files). Physical Review C (in press
- …