2,005 research outputs found

    Superfluid-Mott Insulator Transition of Spin-1 Bosons in an Optical Lattice

    Full text link
    We have studied superfluid-Mott insulating transition of spin-1 bosons interacting antiferromagnetically in an optical lattice. We have obtained the zero-temperature phase diagram by a mean-field approximation and have found that the superfluid phase is to be a polar state as a usual trapped spin-1 Bose gas. More interestingly, we have found that the Mott-insulating phase is strongly stabilized only when the number of atoms per site is even.Comment: 9 pages, 1 figur

    Spin-charge mixing effects on resonant tunneling in a polarized Luttinger Liquid

    Full text link
    We investigate spin-charge mixing effect on resonant tunneling in spin-polarized Tomonaga-Luttinger liquid with double impurities. The mixing arises from Fermi velocity difference between two spin species due to Zeeman effect. Zero bias conductance is calculated as a function of gate voltage VgV_{\rm g}, gate magnetic field BgB_{\rm g}, temperature and magnetic field applied to the system. Mixing effect is shown to cause rotation of the lattice pattern of the conductance peaks in (Vg,Bg)(V_{\rm g},B_{\rm g}) plane, which can be observed in experiments. At low temperatures, the contour shapes are classified into three types, reflecting the fact that effective barrier potential is renormalized towards ``perfect reflection'', ``perfect transmission'' and magnetic field induced ``spin-filtering'', respectively.Comment: 10 pages, 4 figures, Sec.I and references largely changed, results for a strong barrier limit added in a new section Sec.I

    Partially-disordered photonic-crystal thin films for enhanced and robust photovoltaics

    Get PDF
    We present a general framework for the design of thin-film photovoltaics based on a partially-disordered photonic crystal that has both enhanced absorption for light trapping and reduced sensitivity to the angle and polarization of incident radiation. The absorption characteristics of different lattice structures are investigated as an initial periodic structure is gradually perturbed. We find that an optimal amount of disorder controllably introduced into a multi-lattice photonic crystal causes the characteristic narrow-band, resonant peaks to be broadened resulting in a device with enhanced and robust performance ideal for typical operating conditions of photovoltaic applications.Comment: 5 pages, 4 figure

    Measurement of the Noise Spectrum Using a Multiple-Pulse Sequence

    Full text link
    A method is proposed for obtaining the spectrum for noise that causes the phase decoherence of a qubit directly from experimentally available data. The method is based on a simple relationship between the spectrum and the coherence time of the qubit in the presence of a pi-pulse sequence. The relationship is found to hold for every system of a qubit interacting with the classical-noise, bosonic, and spin baths.Comment: 8 pages (4 pages + 4 pages Supplemental material), 1 figur

    Quenching Spin Decoherence in Diamond through Spin Bath Polarization

    Full text link
    We experimentally demonstrate that the decoherence of a spin by a spin bath can be completely eliminated by fully polarizing the spin bath. We use electron paramagnetic resonance at 240 gigahertz and 8 Tesla to study the spin coherence time T2T_2 of nitrogen-vacancy centers and nitrogen impurities in diamond from room temperature down to 1.3 K. A sharp increase of T2T_2 is observed below the Zeeman energy (11.5 K). The data are well described by a suppression of the flip-flop induced spin bath fluctuations due to thermal spin polarization. T2T_2 saturates at 250μs\sim 250 \mu s below 2 K, where the spin bath polarization is 99.4 %.Comment: 5 pages and 3 figure

    Earth embankment erosion control study

    Get PDF
    CER62SSK52.August 1962.For United States Navy, District Public Works Office, Ninth Naval District, through United States, Agricultural Research Service, Soil and Water Conservation Research Division, Fort Collins, Colorado.Includes bibliographical references

    Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction.

    Get PDF
    BackgroundKnowledge of the three-dimensional (3D) infarct structure and fiber orientation remodeling is essential for complete understanding of infarct pathophysiology and post-infarction electromechanical functioning of the heart. Accurate imaging of infarct microstructure necessitates imaging techniques that produce high image spatial resolution and high signal-to-noise ratio (SNR). The aim of this study is to provide detailed reconstruction of 3D chronic infarcts in order to characterize the infarct microstructural remodeling in porcine and human hearts.MethodsWe employed a customized diffusion tensor imaging (DTI) technique in conjunction with late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) on a 3T clinical scanner to image, at submillimeter resolution, myofiber orientation and scar structure in eight chronically infarcted porcine hearts ex vivo. Systematic quantification of local microstructure was performed and the chronic infarct remodeling was characterized at different levels of wall thickness and scar transmurality. Further, a human heart with myocardial infarction was imaged using the same DTI sequence.ResultsThe SNR of non-diffusion-weighted images was >100 in the infarcted and control hearts. Mean diffusivity and fractional anisotropy (FA) demonstrated a 43% increase, and a 35% decrease respectively, inside the scar tissue. Despite this, the majority of the scar showed anisotropic structure with FA higher than an isotropic liquid. The analysis revealed that the primary eigenvector orientation at the infarcted wall on average followed the pattern of original fiber orientation (imbrication angle mean: 1.96 ± 11.03° vs. 0.84 ± 1.47°, p = 0.61, and inclination angle range: 111.0 ± 10.7° vs. 112.5 ± 6.8°, p = 0.61, infarcted/control wall), but at a higher transmural gradient of inclination angle that increased with scar transmurality (r = 0.36) and the inverse of wall thickness (r = 0.59). Further, the infarcted wall exhibited a significant increase in both the proportion of left-handed epicardial eigenvectors, and in the angle incoherency. The infarcted human heart demonstrated preservation of primary eigenvector orientation at the thinned region of infarct, consistent with the findings in the porcine hearts.ConclusionsThe application of high-resolution DTI and LGE-CMR revealed the detailed organization of anisotropic infarct structure at a chronic state. This information enhances our understanding of chronic post-infarction remodeling in large animal and human hearts
    corecore