6,717 research outputs found
Application of ribotyping and IS<i>200</i> fingerprinting to distinguish the five <i>Salmonella</i> serotype O6,7:c:1,5 groups: Choleraesuis <i>sensu stricto</i>, Choleraesuis var. Kunzendorf, Choleraesuis var. Decatur, Paratyphi C, and Typhisuis
Sixty-seven strains of the five described Salmonella serotypes having antigens 6,7:c: 1,5, that is
S. enterica serotype Choleraesuis sensu stricto, Choleraesuis var. Kunzendorf, Choleraesuis var.
Decatur, Paratyphi C, and Typhisuis, were examined for 16S rrn profile ribotype, presence of
IS200 and phenotypic characters, including rate of change of flagellar-antigen phase and
nutritional character. Choleraesuis sensu stricto and its Kunzendorf variant had related but
distinct ribotypes. Therefore, ribotyping appears to be a suitable method for differentiating
Choleraesuis non-Kunzendorf from Choleraesuis var. Kunzendorf. Some strains of Paratyphi C
had 16S profiles that resembled that of Choleraesuis non-Kunzendorf, while others resembled
that of Choleraesuis var. Kunzendorf. The Typhisuis profiles were like those of Choleraesuis
non-Kunzendorf, while the Choleraesuis var. Decatur profiles were unlike those of any of the
other four groups. Furthermore, IS200 fingerprinting discriminated between Choleraesuis var.
Decatur and the other strains with antigenic formula O6,7:c: 1,5, and comparison of IS200
patterns showed a high degree of genetic divergence within Choleraesuis var. Decatur. Our
findings show that ribotyping and IS200 fingerprinting, combined with classical microbiological
methods, distinguish the groups Choleraesuis non-Kunzendorf, Choleraesuis var. Kunzendorf,
Choleraesuis var. Decatur, Paratyphi C and Typhisuis
An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC
We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1
Filtering Interpolators for Image Comparison Algorithms
Comparing two or more images, either by differencing or ratioing, is important to many remote sensing problems. Because the pixel sample points for the images are (almost) always separated by some nonzero shift, a resampling, or interpolation, process must be performed if one image is to be accurately compared to another. Considered in Fourier space, an interpolator acts as a filter that attenuates some frequencies (usually high) of the image. Thus, when the shifted and unshifted images are compared, the former has been filtered, while the latter has not; the effect of this difference is called interpolation error. The key idea of this paper is to apply a filter to the unshifted image that matches the filtering effect of applying the interpolator to the shifted image, thereby drastically reducing interpolation error. The resulting interpolators, called filtering interpolators, are derived and discussed in detail elsewhere. Basic results will be given in this presentation
Developmental Regulation of Small-Conductance Ca²⁺-Activated K⁺ Channel Expression and Function in Rat Purkinje Neurons
Calcium transients play an important role in the early and later phases of differentiation and maturation of single neurons and neuronal networks. Small-conductance calcium-activated potassium channels of the SK type modulate membrane excitability and are important determinants of the firing properties of central neurons. Increases in the intracellular calcium concentration activate SK channels, leading to a hyperpolarization of the membrane potential, which in turn reduces the calcium inflow into the cell. This feedback mechanism is ideally suited to regulate the spatiotemporal occurrence of calcium transients. However, the role of SK channels in neuronal development has not been addressed so far. We have concentrated on the ontogenesis and function of SK channels in the developing rat cerebellum, focusing particularly on Purkinje neurons. Electrophysiological recordings combined with specific pharmacological tools have revealed for the first time the presence of an afterhyperpolarizing current (I_{AHP}) in immature Purkinje cells in rat cerebellar slices. The channel subunits underlying this current were identified as SK2 and localized by in situ hybridization and subunit-specific antibodies. Their expression level was shown to be high at birth and subsequently to decline during the first 3 weeks of postnatal life, both at the mRNA and protein levels. This developmental regulation was tightly correlated with the expression of I_{AHP} and the prominent role of SK2 channels in shaping the spontaneous firing pattern in young, but not in adult, Purkinje neurons. These results provide the first evidence of the developmental regulation and function of SK channels in central neurons
Improving Access to Precipitation Data for GIS Users: Designing for Ease of Use
The Global Precipitation Measurement Mission (GPM) is a NASA/JAXA led international mission to configure a constellation of space-based radiometers to monitor precipitation over the globe. The GPM goal of making global 3-hour precipitation products available in near real-time will make such global products more useful to a broader community of modelers and Geographic Information Systems (GIS) users than is currently the case with remote sensed precipitation products. Based on the existing interest to make Tropical Rainfall Measuring Mission (TRMM) data available to a growing community of GIS users as well as what will certainly be an expanded community during the GPM era, it is clear that data systems must make a greater effort to provide data in formats easily used by GIS. We describe precipitation GIS products being developed for TRMM data. These products will serve as prototypes for production efforts during the GPM era. We describe efforts to convert TRMM precipitation data to GeoTIFF, Shapefile, and ASCII grid. Clearly, our goal is to format GPM data so that it can be easily used within GIS applications. We desire feedback on these efforts and any additions or direction changes that should be undertaken by the data system
TRMM Version 7 Level 3 Gridded Monthly Accumulations of GPROF Precipitation Retrievals
In July 2011, improved versions of the retrieval algorithms were approved for TRMM. All data starting with June 2011 are produced only with the version 7 code. At the same time, version 7 reprocessing of all TRMM mission data was started. By the end of August 2011, the 14+ years of the reprocessed mission data became available online to users. This reprocessing provided the opportunity to redo and enhance upon an analysis of V7 impacts on L3 data accumulations that was presented at the 2010 EGU General Assembly. This paper will discuss the impact of algorithm changes made in th GPROF retrieval on the Level 2 swath products. Perhaps the most important change in that retrieval was to replacement of a model based a priori database with one created from Precipitation Radar (PR) and TMI brightness temperature (Tb) data. The radar pays a major role in the V7 GPROF (GPROF2010) in determining existence of rain. The level 2 retrieval algorithm also introduced a field providing the probability of rain. This combined use of the PR has some impact on the retrievals and created areas, particularly over ocean, where many areas of low-probability precipitation are retrieved whereas in version 6, these areas contained zero rain rates. This paper will discuss how these impacts get translated to the space/time averaged monthly products that use the GPROF retrievals. The level 3 products discussed are the gridded text product 3G68 and the standard 3A12 and 3B31 products. The paper provides an overview of the changes and explanation of how the level 3 products dealt with the change in the retrieval approach. Using the .25 deg x .25 degree grid, the paper will show that agreement between the swath product and the level 3 remains very high. It will also present comparisons of V6 and V7 GPROF retrievals as seen both at the swath level and the level 3 time/space gridded accumulations. It will show that the various L3 products based on GPROF level 2 retrievals are in close agreement. The paper concludes by outlining some of the challenges of the TRMM version 7 level 3 products
- …
