270 research outputs found

    Atypical cellular elements of unknown origin in the subbasal nerve plexus of a diabetic cornea diagnosed by large-area confocal laser scanning microscopy

    Get PDF
    In vivo large-area confocal laser scanning microscopy (CLSM) of the human eye using EyeGuidance technology allows a large-scale morphometric assessment of the corneal subbasal nerve plexus (SNP). Here, the SNP of a patient suffering from diabetes and associated late complications was analyzed. The SNP contained multiple clusters of large hyperintense, stellate-shaped, cellular-like structures. Comparable structures were not observed in control corneas from healthy volunteers. Two hypotheses regarding the origin of these atypical structures are proposed. First, these structures might be keratocyte-derived myofibroblasts that entered the epithelium from the underlying stroma through breaks in Bowman’s layer. Second, these structures could be proliferating Schwann cells that entered the epithelium in association with subbasal nerves. The nature and pathophysiological significance of these atypical cellular structures, and whether they are a direct consequence of the patient’s diabetic neuropathy/or a non-specific secondary effect of associated inflammatory processes, are unknown

    Morphological characterization of the human corneal epithelium by in vivo confocal laser scanning microscopy

    Get PDF
    Background: Regarding the growing interest and importance of understanding the cellular changes of the cornea in diseases, a quantitative cellular characterization of the epithelium is becoming increasingly important. Towards this, the latest research offers considerable improvements in imaging of the cornea by confocal laser scanning microscopy (CLSM). This study presents a pipeline to generate normative morphological data of epithelial cell layers of healthy human corneas. Methods: 3D in vivo CLSM was performed on the eyes of volunteers (n=25) with a Heidelberg Retina Tomograph II equipped with an in-house modified version of the Rostock Cornea Module implementing two dedicated piezo actuators and a concave contact cap. Image data were acquired with nearly isotropic voxel resolution. After image registration, stacks of en-face sections were used to generate full-thickness volume data sets of the epithelium. Beyond that, an image analysis algorithm quantified en-face sections of epithelial cells regarding the depth-dependent mean of cell density, area, diameter, aggregation (Clark and Evans index of aggregation), neighbor count and polygonality. Results: Imaging and cell segmentation were successfully performed in all subjects. Thereby intermediated cells were efficiently recognized by the segmentation algorithm while efficiency for superficial and basal cells was reduced. Morphological parameters showed an increased mean cell density, decreased mean cell area and mean diameter from anterior to posterior (5,197.02 to 8,190.39 cells/mm²; 160.51 to 90.29 µm²; 15.9 to 12.3 µm respectively). Aggregation gradually increased from anterior to posterior ranging from 1.45 to 1.53. Average neighbor count increased from 5.50 to a maximum of 5.66 followed by a gradual decrease to 5.45 within the normalized depth from anterior to posterior. Polygonality gradually decreased ranging from 4.93 to 4.64 sides of cells. The neighbor count and polygonality parameters exhibited profound depth-dependent changes. Conclusions: This in vivo study demonstrates the successful implementation of a CLSM-based imaging pipeline for cellular characterization of the human corneal epithelium. The dedicated hardware in combination with an adapted image registration method to correct the remaining motion-induced image distortions followed by a dedicated algorithm to calculate characteristic quantities of different epithelial cell layers enabled the generation of normative data. Further significant effort is necessary to improve the algorithm for superficial and basal cell segmentation

    SMER28 attenuates PI3K/mTOR signaling by direct inhibition of PI3K p110 delta

    Get PDF
    SMER28 (Small molecule enhancer of Rapamycin 28) is an autophagy-inducing compound functioning by a hitherto unknown mechanism. Here, we confirm its autophagy-inducing effect by assessing classical autophagy-related parameters. Interestingly, we also discovered several additional effects of SMER28, including growth retardation and reduced G1 to S phase progression. Most strikingly, SMER28 treatment led to a complete arrest of receptor tyrosine kinase signaling, and, consequently, growth factor-induced cell scattering and dorsal ruffle formation. This coincided with a dramatic reduction in phosphorylation patterns of PI3K downstream effectors. Consistently, SMER28 directly inhibited PI3Kδ and to a lesser extent p110γ. The biological relevance of our observations was underscored by SMER28 interfering with InlB-mediated host cell entry of Listeria monocytogenes, which requires signaling through the prominent receptor tyrosine kinase c-Met. This effect was signaling-specific, since entry of unrelated, gram-negative Salmonella Typhimurium was not inhibited. Lastly, in B cell lymphoma cells, which predominantly depend on tonic signaling through PI3Kδ, apoptosis upon SMER28 treatment is profound in comparison to non-hematopoietic cells. This indicates SMER28 as a possible drug candidate for the treatment of diseases that derive from aberrant PI3Kδ activity

    Use of a Javidâ„¢ shunt in the management of axillary artery injury as a complication of fracture of the surgical neck of the humerus: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Axillary artery injury is a rare but severe complication of fractures of the surgical neck of the humerus.</p> <p>Case presentation</p> <p>We present a case of axillary artery pseudoaneurysm secondary to such a fracture, in a 82-year-old white woman, presenting 10 weeks after the initial injury, successfully treated with subclavian to brachial reversed vein bypass together with simultaneous open reduction and internal fixation of the fracture. We discuss the use of a Javidâ„¢ shunt during combined upper limb revascularisation and open reduction and internal fixation of the fractured humerus.</p> <p>Conclusion</p> <p>This case highlights the usefulness of a Javidâ„¢ shunt, over other forms of vascular shunts, in prompt restoration of blood flow to effect limb salvage. It can be considered as a temporary measure whilst awaiting definitive revascularisation which can be performed following fracture fixation.</p

    Ultrahigh field MRI determination of water diffusion rates in ex vivo human lenses of different age

    Get PDF
    BACKGROUND: The development of presbyopia is correlated with increased lens stiffness. To reveal structural changes with age, ultrahigh field magnetic resonance imaging (UHF-MRI) was used to analyze water diffusion in differently aged human lenses ex vivo. METHODS: After enucleation lens extractions were performed. Lenses were photographed, weighed, and embedded in 0.5% agarose dissolved in culture medium. UHF-MRI was conducted to analyze anatomical characteristics of the lens using T2-weighted Turbo-RARE imaging and to obtain apparent diffusion coefficients (ADC) measurements. A Gaussian fit routine was used to examine the ADC histograms. RESULTS: An age-dependent increase in lens wet weight, lens thickness, and lens diameter was found (P<0.001). T2-weighted images revealed a hyperintense lens cortex and a gradually negative gradient in signal intensity towards the nucleus. ADC histograms of the lens showed bimodal distributions (lower ADC values mainly located in the nucleus and higher ADC values mainly located in the cortex), which did not change significantly with age [βPeak1=1.96E-7 (-20E-7, 10E-7), P=0.804 or βPeak2=15.4E-7 (-10E-7, 40E-7), P=0.276; respectively]. CONCLUSIONS: Clinically relevant age dependent lens hardening is probably not correlated with ADC changes within the nucleus, which could be confirmed by further measurements

    A Potent Lead Induces Apoptosis in Pancreatic Cancer Cells

    Get PDF
    Pancreatic cancer is considered a lethal and treatment-refractory disease. To obtain a potent anticancer drug, the cytotoxic effect of 2-(benzo[d]oxazol-3(2H)-ylmethyl)- 5-((cyclohexylamino)methyl)benzene-1,4-diol, dihydrochloride (NSC48693) on human pancreatic cancer cells CFPAC-1, MiaPaCa-2, and BxPC-3 was assessed in vitro. The proliferation of CFPAC-1, MiaPaCa-2, and BxPC-3 is inhibited with IC50 value of 12.9±0.2, 20.6±0.3, and 6.2±0.6 µM at 48 h, respectively. This discovery is followed with additional analysis to demonstrate that NSC48693 inhibition is due to induction of apoptosis, including Annexin V staining, chromatins staining, and colony forming assays. It is further revealed that NSC48693 induces the release of cytochrome c, reduces mitochondrial membrane potential, generates reactive oxygen species, and activates caspase. These results collectively indicate that NSC48693 mainly induces apoptosis of CFPAC-1, MiaPaCa-2, and BxPC-3 cells by the mitochondrial-mediated apoptotic pathway. Excitingly, the study highlights an encouraging inhibition effect that human embryonic kidney (HEK-293) and liver (HL-7702) cells are more resistant to the antigrowth effect of NSC48693 compared to the three cancer cell lines. From this perspective, NSC48693 should help to open up a new opportunity for the treatment of patients with pancreatic cancer
    • …
    corecore