1,618 research outputs found

    The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent animal and human studies implicate chronic activation of microglia in the progressive loss of CNS neurons. The inflammatory mechanisms that have neurotoxic effects and contribute to neurodegeneration need to be elucidated and specifically targeted without interfering with the neuroprotective effects of glial activities. Synthetic triterpenoid analogs of oleanolic acid, such as methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me, RTA 402) have potent anti-proliferative and differentiating effects on tumor cells, and anti-inflammatory activities on activated macrophages. We hypothesized that CDDO-Me may be able to suppress neurotoxic microglial activities while enhancing those that promote neuronal survival. Therefore, the aims of our study were to identify specific microglial activities modulated by CDDO-Me <it>in vitro</it>, and to determine the extent to which this modulation affords neuroprotection against inflammatory stimuli.</p> <p>Methods</p> <p>We tested the synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me, RTA 402) in various <it>in vitro </it>assays using the murine BV2 microglia cell line, mouse primary microglia, or mouse primary peritoneal macrophages to investigate its effects on proliferation, inflammatory gene expression, cytokine secretion, and phagocytosis. The antioxidant and neuroprotective effects of CDDO-Me were also investigated in primary neuron/glia cultures from rat basal forebrain or ventral midbrain.</p> <p>Results</p> <p>We found that at low nanomolar concentrations, treatment of rat primary mesencephalon neuron/glia cultures with CDDO-Me resulted in attenuated LPS-, TNF- or fibrillar amyloid beta 1–42 (Aβ1–42) peptide-induced increases in reactive microglia and inflammatory gene expression without an overall effect on cell viability. In functional assays CDDO-Me blocked death in the dopaminergic neuron-like cell line MN9D induced by conditioned media (CM) of LPS-stimulated BV2 microglia, but did not block cell death induced by addition of TNF to MN9D cells, suggesting that dopaminergic neuroprotection by CDDO-Me involved inhibition of microglial-derived cytokine production and not direct inhibition of TNF-dependent pro-apoptotic pathways. Multiplexed immunoassays of CM from LPS-stimulated microglia confirmed that CDDO-Me-treated BV2 cells produced decreased levels of specific subsets of cytokines, in particular TNF. Lastly, CDDO-Me enhanced phagocytic activity of BV2 cells in a stimulus-specific manner but inhibited generation of reactive oxygen species (ROS) in mixed neuron/glia basal forebrain cultures and dopaminergic cells.</p> <p>Conclusion</p> <p>The neuroimmune modulatory properties of CDDO-Me indicate that this potent antioxidant and anti-inflammatory compound may have therapeutic potential to modify the course of neurodegenerative diseases characterized by chronic neuroinflammation and amyloid deposition. The extent to which synthetic triterpenoids afford therapeutic benefit in animal models of Parkinson's and Alzheimer's disease deserves further investigation.</p

    A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta

    Get PDF
    Transforming growth factor-beta (TGF-beta) increases the steady-state RNA levels of several fibroblast extracellular matrix proteins. Using DNA transfection, we show that TGF-beta stimulates the activity of the mouse alpha 2(l) collagen promoter 5- to 10-fold in mouse NIH 3T3 and rat osteosarcoma cells. Deletion analysis indicates that a segment of this promoter between -350 and -300, overlapping a nuclear factor 1 (NF1) binding site, is needed for TGF-beta stimulation. A 3 bp substitution mutation abolishing NF1 binding to this site inhibits TGF-beta activation. Insertion of this NF1 binding site 5' to the SV40 early promoter makes the promoter TGF-beta inducible, but the 3 bp substitution does not. Similarly, when the NF1 binding site at the replication origin of adenovirus 2 and 5 is inserted 5' to the SV40 promoter, the promoter responds to TGF-beta. Therefore an NF1 binding site mediates the transcriptional activation of the mouse alpha 2(l) collagen promoter by TGF-beta

    Class Attendance and Students’ Evaluations of Teaching: Do No-Shows Bias Course Ratings and Rankings?

    Get PDF
    Background: Many university departments use students’ evaluations of teaching (SET) to compare and rank courses. However, absenteeism from class is often nonrandom and, therefore, SET for different courses might not be comparable. Objective: The present study aims to answer two questions. Are SET positively biased due to absenteeism? Do procedures, which adjust for absenteeism, change course rankings? Research Design: The author discusses the problem from a missing data perspective and present empirical results from regression models to determine which factors are simultaneously associated with students’ class attendance and course ratings. In order to determine the extent of these biases, the author then corrects average ratings for students’ absenteeism and inspect changes in course rankings resulting from this adjustment. Subjects: The author analyzes SET data on the individual level. One or more course ratings are available for each student. Measures: Individual course ratings and absenteeism served as the key outcomes. Results: Absenteeism decreases with rising teaching quality. Furthermore, both factors are systematically related to student and course attributes. Weighting students’ ratings by actual absenteeism leads to mostly small changes in ranks, which follow a power law. Only a few, average courses are disproportionally influenced by the adjustment. Weighting by predicted absenteeism leads to very small changes in ranks. Again, average courses are more strongly affected than courses of very high or low in quality. Conclusions: No-shows bias course ratings and rankings. SET are more appropriate to identify high- and low-quality courses than to determine the exact ranks of average courses

    PPAR-γ: a thrifty transcription factor

    Get PDF
    The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a prototypical metabolic nuclear receptor that acts as a lipid sensor, integrating the homeostatic control of energy, lipid, and glucose metabolism. This perspective will highlight three lines of evidence which place PPAR-γ as a key player in a feed-forward pathway favoring differentiation and energy storage by adipocytes

    NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival

    Get PDF
    Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5′ untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics
    • …
    corecore