253 research outputs found
The 412 retrotransposon and the development of gonadal mesoderm in Drosophila
We have shown that the expression of the 412 retrotransposon provides a useful early marker for the development of the gonadal mesoderm in Drosophila embryos. 412 is initially expressed in a set of parasegmentally repeated stripes from parasegments (PS) 2-14 in the mesoderm at the extended germ band stage. During germ band retraction the bulk of 412 expression declines except in dorsolateral clusters of cells in PS10, 11 and 12, where high levels of 412 expression remain. These mesodermal cell clusters are associated with germ cells and subsequently they coalesce, rounding up to form the gonads. The gonadal mesoderm thus appears to originate specifically from three abdominal parasegments, PS10, 11 and 12. We show that the maintenance of high levels of 412 expression in gonadal mesoderm is not induced by contact with germ cells, but rather depends on genetic control by the homeotic genes abdominal-A and Abdominal-B
1-(2-Chloroacetyl)-3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperidine-4-one
In the crystal structure of the title compound, C26H32ClNO8, the piperidine ring is in a twist-chair conformation, with puckering parameters Q = 0.655 (4) Å, θ = 93.1 (1) and ϕ = 254.4 (3)°. The ortho C atoms of the piperidine ring deviate from the plane defined by the remaining ring atoms by 0.380 (3) and −0.250 (3) Å
1-Benzhydryl-4-(4-chlorophenylsulfonyl)piperazine
The title compound, C23H23ClN2O2S, was synthesized by the nucleophilic substitution of 1-benzhydrylpiperazine with 4-chlorophenylsulfonyl chloride. The piperazine ring is in a chair conformation. The geometry around the S atom is that of a distorted tetrahedron. There is a large range of bond angles around the piperazine N atoms. The dihedral angle between the least-squares plane (p1) defined by the four coplanar C atoms of the piperazine ring and the benzene ring is 81.6 (1)°. The dihedral angles between p1 and the phenyl rings are 76.2 (1) and 72.9 (2)°. The two phenyl rings make a dihedral angle of 65.9 (1)°. Intramolecular C—H⋯O hydrogen bonds are present
1-Acryloyl-2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one
In the crystal structure of the title compound, C22H21Cl2NO2, the piperidinone ring is in a boat conformation
N-[4-Cyano-3-(trifluoromethyl)phenyl]-2-ethoxybenzamide
In the title compound, C17H13F3N2O2, the two aromatic rings are essentially coplanar, forming a dihedral angle of 2.78 (12)°. The non-H atoms of the ethoxy group are coplanar with the attached ring [maximum deviation = 0.271 (3) Å]. An intramolecular N—H⋯O hydrogen bond occurs. In the crystal structure, molecules are linked by intermolecular C—H⋯N and C—H⋯F hydrogen bonds
Syntheses, structure, reactivity and species recognition studies of oxo-vanadium(V) and -molybdenum(VI) complexes
Alkoxo-rich Schiff-bases of potentially tri-, tetra- and penta-dentate binding capacity, and their sodium tetrahydroborate-reduced derivatives, have been synthesized. Their oxo-vanadium(V) and -molybdenum(VI) complexes were synthesized and characterized using several analytical and spectral techniques including multinuclear NMR spectroscopy and single-crystal X-ray diffraction studies. Eight structurally different types of complexes possessing distorted square-pyramidal, trigonal-bipyramidal and octahedral geometries have been obtained. While (VO)-O-V exhibits dimeric Structures with 2-HOC6H4CH=NC(CH2OH)(3) and 2-HOC6H4CH2-NHC(CH2OH)(3) and related ligands through the formation of a symmetric V2O2 core as a result of bridging of one of the CH2O- groups, Mo O-VI gives only mononuclear complexes even when some unbound CH2OH groups are available and the metal center is co-ordinatively unsaturated. In all the complexes the nitrogen atom from a HC=N or H2CNH group of the ligand occupies a near trans position to the M=O bond. While the Schiff-base ligands act in a tri- and tetra-dentate manner in the vanadium(V) complexes, they are only tridentate in the molybdenum(VI) complexes. Proton NMR spectra in the region of bound CH, provides a signature that helps to differentiate dinuclear from mononuclear complexes. Carbon-13 NMR co-ordination induced shifts of the bound CH, group fit well with the charge on the oxometal species and the terminal or bridging nature of the ligand. The reactivity of the vanadium(V) complexes towards bromination of the dye xylene cyanole was studied. Transmetallation reactions of several preformed metal complexes of 2-HOC6H4CH=NC(CH2OH)(3) with VO3+ were demonstrated as was selective extraction of VO3+ from a mixture of VO(acac)(2)] and MoO2(acac)(2)] using this Schiff base. The unusual selectivity and that of related derivatives for VO3+ is supported by binding constants and the solubility of the final products, and was established through a.c. conductivity measurements. The cis-MoO22+ complexes with alkoxo binding showed an average Mo-O-alk distance of 1.926 Angstrom, a value that is close to that observed in the molybdenum(VI) enzyme dmso reductase (1.92 Angstrom). Several correlations have been drawn based on the data
1-(2-Hydroxy-5-methylphenyl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one
In the structure of the title compound, C15H14O2S, the benzene ring is nearly coplanar with the thiophene ring. The hydroxy group substituted at C2 position is in an antiperiplanar conformation with respect to the phenyl ring. The crystal structure exhibits weak intramolecular O—H⋯O hydrogen bonding
- …