61 research outputs found
Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross
An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer
Genetic association between longevity and linear type traits of Holstein cows
Longevity is a desirable trait in the dairy industry because of its relationship to profitability. The aim of this study was to estimate genetic parameters for longevity measurements related to productive life, or life in the herd, and linear type traits of Brazilian Holstein cows born between the years 1990 and 2008. The (co) variance components were estimated by the restricted maximum likelihood method. The heritability for measurements of longevity and linear type traits ranged from 0.05 to 0.07 and 0.08 to 0.39, respectively. The genetic correlations between measurements of longevity and linear type traits ranged from -0.39 to 0.31. Direct selection for longevity does not necessarily lead to long-lived cows, due to low heritability. Indirect genetic selection for udder depth, bone quality, udder height, rear teat placement and conformation traits showed the highest genetic correlations with measurements of time between birth and last milk record and time from first calving to last milk record
Genome-Wide Association Study Identified a Narrow Chromosome 1 Region Associated with Chicken Growth Traits
Chicken growth traits are important economic traits in broilers. A large number of studies are available on finding genetic factors affecting chicken growth. However, most of these studies identified chromosome regions containing putative quantitative trait loci and finding causal mutations is still a challenge. In this genome-wide association study (GWAS), we identified a narrow 1.5 Mb region (173.5–175 Mb) of chicken (Gallus gallus) chromosome (GGA) 1 to be strongly associated with chicken growth using 47,678 SNPs and 489 F2 chickens. The growth traits included aggregate body weight (BW) at 0–90 d of age measured weekly, biweekly average daily gains (ADG) derived from weekly body weight, and breast muscle weight (BMW), leg muscle weight (LMW) and wing weight (WW) at 90 d of age. Five SNPs in the 1.5 Mb KPNA3-FOXO1A region at GGA1 had the highest significant effects for all growth traits in this study, including a SNP at 8.9 Kb upstream of FOXO1A for BW at 22–48 d and 70 d, a SNP at 1.9 Kb downstream of FOXO1A for WW, a SNP at 20.9 Kb downstream of ENSGALG00000022732 for ADG at 29–42 d, a SNP in INTS6 for BW at 90 d, and a SNP in KPNA3 for BMW and LMW. The 1.5 Mb KPNA3-FOXO1A region contained two microRNA genes that could bind to messenger ribonucleic acid (mRNA) of IGF1, FOXO1A and KPNA3. It was further indicated that the 1.5 Mb GGA1 region had the strongest effects on chicken growth during 22–42 d
Detecting parent of origin and dominant QTL in a two-generation commercial poultry pedigree using variance component methodology
<p>Abstract</p> <p>Introduction</p> <p>Variance component QTL methodology was used to analyse three candidate regions on chicken chromosomes 1, 4 and 5 for dominant and parent-of-origin QTL effects. Data were available for bodyweight and conformation score measured at 40 days from a two-generation commercial broiler dam line. One hundred dams were nested in 46 sires with phenotypes and genotypes on 2708 offspring. Linear models were constructed to simultaneously estimate fixed, polygenic and QTL effects. Different genetic models were compared using likelihood ratio test statistics derived from the comparison of full with reduced or null models. Empirical thresholds were derived by permutation analysis.</p> <p>Results</p> <p>Dominant QTL were found for bodyweight on chicken chromosome 4 and for bodyweight and conformation score on chicken chromosome 5. Suggestive evidence for a maternally expressed QTL for bodyweight and conformation score was found on chromosome 1 in a region corresponding to orthologous imprinted regions in the human and mouse.</p> <p>Conclusion</p> <p>Initial results suggest that variance component analysis can be applied within commercial populations for the direct detection of segregating dominant and parent of origin effects.</p
Genetic Correlations among Body Condition Score and Fertility in First-Parity Canadian Cows
peer reviewedThe objective of this research was to estimate the genetic correlations among body condition score (BCS) and fertility traits for first-parity Canadian cows. Two approaches were investigated. Firstly, two-trait models between fertility traits and BCS at different stages of lactation were used. Secondly, random regression models were used to estimate correlation between BCS as a longitudinal trait and fertility traits. This report presents some preliminary results of this research
- …