591 research outputs found

    Classes Without Labor: Three Critiques of Bourdieu

    Get PDF
    This article offers three interrelated critiques of Bourdieusian class analysis. First, Bourdieu replaces classes on paper with capitals on paper. He offers a false break from Marx in an effort to make capital more ‘relational’ via a theory of social space, but in doing so he neglects capital’s fundamental relation to labor. Second, Bourdieu offers a theory of domination without exploitation. Bourdieu’s classes live against one another, but it remains unclear how some classes might also live off of others. Third, and as a consequence of the first two missteps, he emphasizes position over production. Bourdieu typically sees ‘production’ as a form of ‘position-taking’ and as something best examined toward the top of social hierarchies. By largely ignoring labor and exploitation, he generates a theory of positions at the expense of a theory of production

    Direct Current Electrical Stimulation Increases the Fusion Rate of Spinal Fusion Cages

    Get PDF
    Study Design. A randomized experimental evaluation of direct current stimulation in a validated animal model with an experimental control group, using blinded radiographic, biomechanical, histologic, and statistical measures. Objectives. To evaluate the efficacy of the adjunctive use of direct current stimulation on the fusion rate and speed of healing of titanium interbody fusion cages packed with autograft in a sheep lumbar interbody fusion model. Summary of Background Data. Titanium lumbar interbody spinal fusion cages have been reported to be 90% effective for single-level lumbar interbody fusion. However, fusion rates are reported to be between 70% and 80% in patients with multilevel fusions or with risk factors such as obesity, tobacco use, or metabolic disorders. The authors hypothesized that direct current stimulation would increase the fusion rate of titanium interbody fusion cages packed with autograft in a sheep lumbar interbody fusion model. Methods. Twenty-two sheep underwent lumbar discectomy and fusion at L4–L5 with an 11- × 20-mm Bagby and Kuslich (BAK) cage packed with autograft. Seven sheep received a BAK cage and no current. Seven sheep had a cage and a 40-ÎŒA current applied with a direct current stimulator. Eight sheep had a BAK cage and a 100-ÎŒA current applied. All sheep were killed 4 months after surgery. The efficacy of electrical stimulation in promoting interbody fusion was assessed by performing radiographic, biomechanical, and histologic analyses in a blinded fashion. Results. The histologic fusion rate increased as the direct current dose increased from 0 ÎŒA to 40 ÎŒA to 100 ÎŒA (P \u3c 0.009). Histologically, all animals in the 100-ÎŒA group had fusions in both the right and left sides of the cage. Direct current stimulation had a significant effect on increasing the stiffness of the treated motion segment in right lateral bending (P \u3c 0.120), left lateral bending (P \u3c 0.017), right axial rotation (P \u3c 0.004), left axial rotation (P \u3c 0.073), extension (P \u3c 0.078), and flexion (P \u3c 0.029) over nonstimulated levels. Conclusion. Direct current stimulation increased the histologic and biomechanical fusion rate and the speed of healing of lumbar interbody spinal fusion cages in an ovine model at 4 months

    Polyetheretherketone as a Biomaterial for Spinal Applications

    Get PDF
    Threaded lumbar interbody spinal fusion devices (TIBFD) made from titanium have been reported to be 90% effective for single-level lumbar interbody fusion, although radiographic determination of fusion has been intensely debated in the literature. Using blinded radiographic, biomechanic, histologic, and statistical measures, we evaluated a radiolucent polyetheretherketone (PEEK)-threaded interbody fusion device packed with autograft or rhBMP-2 on an absorbable collagen sponge in 13 sheep at 6 months. Radiographic fusion, increased spinal level biomechanical stiffness, and histologic fusion were demonstrated for the PEEK cages filled with autograft or rhBMP-2 on a collagen sponge. No device degradation or wear debris was observed. Only mild chronic inflammation consisting of a few macrophages was observed in peri-implant tissues. Based on these results, the polymeric biomaterial PEEK may be a useful biomaterial for interbody fusion cages due to the polymer\u27s increased radiolucency and decreased stiffness

    Bioresorbable Polylactide Interbody Implants in an Ovine Anterior Cervical Discectomy and Fusion Model: Three-Year Results

    Get PDF
    Study Design. In vivo study of anterior discectomy and fusion using a bioresorbable 70:30 poly(l-lactide-co-d,l-lactide) interbody implant in an ovine model. Objective. To evaluate the efficacy of the polylactide implant to function as an interbody fusion device, and to assess the tissue reaction to the material during the resorption process. Summary of Background Data. The use of polylactide as a cervical interbody implant has several potential advantages when compared with traditional materials. Having an elastic modulus very similar to bone minimizes the potential for stress shielding, and as the material resorbs additional loading is transferred to the developing fusion mass. Although preclinical and clinical studies have demonstrated the suitability of polylactide implants for lumbar interbody fusion, detailed information on cervical anterior cervical discectomy and fusion (ACDF) with polylactide devices is desirable. Methods. Single level ACDF was performed in 8 skeletally mature ewes. Bioresorbable 70:30 poly (l-lactide-co-d,l-lactide) interbody implants packed with autograft were used with single-level metallic plates. Radiographs were made every 3 months up to 1 year, and yearly thereafter. The animals were killed at 6 months (3 animals), 12 months (3 animals), and 36 months (2 animals). In addition to the serial plain radiographs, the specimens were evaluated by nondestructive biomechanical testing and undecalcified histologic analysis. Results. The bioresorbable polylactide implants were effective in achieving interbody fusion. The 6-month animals appeared fused radiographically and biomechanically, whereas histologic sections demonstrated partial fusion (in 3 of 3 animals). Radiographic fusion was confirmed histologically and biomechanically at 12 months (3 of 3 animals) and 36 months (2 of 2 animals). A mild chronic inflammatory response to the resorbing polylactide implant was observed at both 6 months and 12 months. At 36 months, the operative levels were solidly fused and the implants were completely resorbed. No adverse tissue response was observed in any animal at any time period. Conclusion. Interbody fusion was achieved using bioresorbable polylactide implants, with no evidence of implant collapse, extrusion, or adverse tissue response to the material. The use of polylactide as a cervical interbody device appears both safe and effective based on these ACDF animal model results

    Histologic Evaluation of the Efficacy of rhBMP-2 Compared With Autograft Bone in Sheep Spinal Anterior Interbody Fusion

    Get PDF
    Study Design. The sheep anterior lumbar spinal fusion model was used to study the efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2)–collagen composite in comparison with autograft to enhance spinal interbody fusion. Comparisons were drawn from temporal radiographic and end-point biomechanical and histologic data. Objective. To analyze histologically the ability of rhBMP-2 to achieve complete arthrodesis between vertebral bodies. Summary of Background Data. Studies using rhBMP for enhancement of anterior interbody fusion have used numerous endpoints. However, systematic histologic evaluation of the fusion has not been conducted. Methods. Twelve sheep underwent single-level anterior lumbar interbody fusion performed with a cylindrical fenestrated titanium interbody fusion device (INTER FIX, Medtronic Sofamor Danek, Inc., Memphis, TN). The device was filled either with rhBMP-2–collagen (n = 6) or autogenous iliac crest bone graft (n = 6). Radiologic evaluation was carried out at 2-month intervals, and all sheep were killed 6 months after surgery. Nondestructive biomechanical testing for stiffness to flexion, extension, and lateral bending moments, un-decalcified histology, and qualitative and quantitative histologic evaluation were performed. Results. Radiographs revealed a bony bridge anterior to the cage in five of six rhBMP-2-treated animals, whereas it was present only in one of five in the autogenous bone graft group. Segments treated with rhBMP-2 were 20% stiffer in flexion than autograft-treated segments at 6 months. Six of six in the rhBMP-2 group and two of six in the autograft group showed complete fusion. There was a significantly higher rate of bony continuity observed at the fenestrations of the rhBMP-2 group. Three times more number of cage fenestrations in the rhBMP-2 group demonstrated “all-bone” when compared with the autograft group (P \u3c 0.001). Further, the scar tissue in and around the autograft-treated cages was 16-fold more (P \u3c 0.01) than that seen for rhBMP-2-treated cages. Conclusions. The study demonstrates that rhBMP-2 can lead to earlier radiologic fusion and a more consistent increased stiffness of the segments when compared with autograft in sheep anterior lumbar interbody fusion. Furthermore, a three times higher histologic fusion rate is attainable with significantly reduced fibrous tissue around the implant when rhBMP-2 is used

    The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models – a European perspective

    Get PDF
    We compare Holocene tree cover changes in Europe derived from a transient Earth system model simulation (Max Planck Institute Earth System Model – MPI-ESM1.2, including the land surface and dynamic vegetation model JSBACH) with high-spatial-resolution time slice simulations performed in the dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator) and pollen-based quantitative reconstructions of tree cover based on the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models, indicating much earlier anthropogenic deforestation than the prescribed land use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model–data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are – like most of the parameters in the vegetation models – static and calibrated to modern conditions. However, these parameter values may not be valid for past climate and vegetation states totally different from today's. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present-day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for paleo-simulations and complicate model–data comparisons with additional challenges. Moreover, our study suggests that land use is the main driver of forest decline in Europe during the mid-Holocene and late Holocene.</p

    A more sustainable and highly practicable synthesis of aliphatic isocyanides

    Get PDF
    Synthesis protocols to convert N-formamides into isocyanides using three different dehydration reagents (i.e. p-toluenesulfonyl chloride (p-TsCl), phosphoryl trichloride (POCl3) and the combination of triphenylphosphane (PPh3) and iodine) were investigated and optimized, while considering the principles of green chemistry. Comparison of the yield and the E-factors of the different synthesis procedures revealed that, in contrast to the typically applied POCl3 or phosgene derivatives, p-TsCl was the reagent of choice for non sterically demanding aliphatic mono- or di-N-formamides (yields up to 98% and lowest E-factor 6.45). Apart from a significantly reduced E-factor, p-TsCl is cheap, offers a simplified reaction protocol and work-up, and is less toxic compared to other dehydration reagents. Thus, this procedure offers easier and greener access to aliphatic isocyanide functionalities

    Industry 4.0: Whose Revolution? The Digitalization of Manufacturing Work Processes

    Get PDF
    The ongoing digitalization of manufacturing work processes resulting from Industry 4.0—defined as digitalization, automation, and data exchange in manufacturing—challenges how we see and define the role of operators and managers. Consequently, this study investigates the extent to which digital tools are used and available to managers and operators in manufacturing who are experiencing digitalization due to Industry 4.0 movements. A cross-sectional study of production managers and operators (n = 417) was conducted among 10 Norwegian manufacturing companies. Results from independent t-tests and Chi-square tests indicate that, compared with operators, production managers report higher satisfaction with different digitalization experiences, more extensive use of digital systems for registration and documentation, and greater availability of digital tools. Thus, digitalization and digital tools based on the Industry 4.0 concepts seem to have only reached the managerial level, and the revolution seems to be top down
    • 

    corecore