8 research outputs found
Using qualitative and quantitative methods to choose a habitat quality metric for air pollution policy evaluation
Atmospheric nitrogen (N) deposition has had detrimental effects on species composition in a range of sensitive habitats, although N deposition can also increase agricultural productivity and carbon storage, and favours a few species considered of importance for conservation. Conservation targets are multiple, and increasingly incorporate services derived from nature as well as concepts of intrinsic value. Priorities vary. How then should changes in a set of species caused by drivers such as N deposition be assessed? We used a novel combination of qualitative semi-structured interviews and quantitative ranking to elucidate the views of conservation professionals specialising in grasslands, heathlands and mires. Although conservation management goals are varied, terrestrial habitat quality is mainly assessed by these specialists on the basis of plant species, since these are readily observed. The presence and abundance of plant species that are scarce, or have important functional roles, emerged as important criteria for judging overall habitat quality. However, species defined as âpositive indicator-speciesâ (not particularly scarce, but distinctive for the habitat) were considered particularly important. Scarce species are by definition not always found, and the presence of functionally important species is not a sufficient indicator of site quality. Habitat quality as assessed by the key informants was rank-correlated with the number of positive indicator-species present at a site for seven of the nine habitat classes assessed. Other metrics such as species-richness or a metric of scarcity were inconsistently or not correlated with the specialistsâ assessments. We recommend that metrics of habitat quality used to assess N pollution impacts are based on the occurrence of, or habitat-suitability for, distinctive species. Metrics of this type are likely to be widely applicable for assessing habitat change in response to different drivers. The novel combined qualitative and quantitative approach taken to elucidate the priorities of conservation professionals could be usefully applied in other contexts
Squared Focal Intensity Distributions for Applications in Laser Material Processing
Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element that provides different squared intensity distributions converted from the Gaussian output beam of the utilized femtosecond (fs) laser. Using the examples of surface structuring of stainless-steel on the micro- and nano-scale, the suitability of the beam-shaping element for fs-laser material processing with a conventional f-Theta lens is demonstrated. In this context, it was shown that the experimental structuring results are in good agreement with beam profile measurements and numerical simulations of the beam-shaping unit. In addition, the experimental results reveal the improvement of laser processing in terms of a significantly reduced processing time during surface nano-structuring and the possibility to control the ablation geometry during the fabrication of micro-channels
Developments in deriving critical limits and modelling critical loads of nitrogen for terrestrial ecosystems in Europe
This collaborative report of Alterra and the Coordination Center for Effects (MNP-CCE), in co-operation with various participants of the International Cooperative programme on Modelling and Mapping (ICP-MM) includes: 1. A summarizing overview of adverse nitrogen deposition effects on terrestrial ecosystems in terms of impacts on plant species and faunal biodiversity, forest nutrient status in relation to impacts on soil and solution chemistry and on ground water quality. 2. An overview of integrated dynamic biogeochemical models with plant species diversity models, that allow the assessment of critical loads and target loads of nitrogen in view of plant species diversity impacts. 3. A review of currently used critical limits for N concentrations in soil solution and derivation of new critical limits, based on field (literature) data and integrated soil vegetation models, that can be used in the computation of critical loads by steady state soil models. This updated knowledge of N effects, critcal N load methodologies (integrated models) and critical N limits a can contribute to a more appropriate data submission on critical N loads by the National Focal Centres to the CCE, specifically in view of biodiversity impacts, to be used for support of the UNECE and EU air pollution policies