445 research outputs found

    Hyperfine structure of S states in Li and Be^+

    Full text link
    A large-scale configuration-interaction (CI) calculation is reported for the hyperfine splitting of the 2^2S and 3^2S states of ^7Li and ^9Be^+. The CI calculation based on the Dirac-Coulomb-Breit Hamiltonian is supplemented with a separate treatment of the QED, nuclear-size, nuclear-magnetization distribution, and recoil corrections. The nonrelativistic limit of the CI results is in excellent agreement with variational calculations. The theoretical values obtained for the hyperfine splitting are complete to the relative order of \alpha^2 and improve upon results of previous studies.Comment: 4 pages, 2 table

    Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms

    Full text link
    Electric dipole moments (edms) of bound states that arise from the constituents having edms are studied with field-theoretic techniques. The systems treated are the neutron and a set of paramagnetic atoms. In the latter case it is well known that the atomic edm differs greatly from the electron edm when the internal electric fields of the atom are taken into account. In the nonrelativistic limit these fields lead to a complete suppression, but for heavy atoms large enhancement factors are present. A general bound-state field theory approach applicable to both the neutron and paramagnetic atoms is set up. It is applied first to the neutron, treating the quarks as moving freely in a confining spherical well. It is shown that the effect of internal electric fields is small in this case. The atomic problem is then revisited using field-theory techniques in place of the usual Hamiltonian methods, and the atomic enhancement factor is shown to be consistent with previous calculations. Possible application of bound-state techniques to other sources of the neutron edm is discussed.Comment: 21 pages, 5 figure

    Two-Loop Bethe Logarithms for non-S Levels

    Get PDF
    Two-loop Bethe logarithms are calculated for excited P and D states in hydrogenlike systems, and estimates are presented for all states with higher angular momenta. These results complete our knowledge of the P and D energy levels in hydrogen at the order of alpha^8 m_e c^2, where m_e is the electron mass and c is the speed of light, and scale as Z^6, where Z is the nuclear charge number. Our analytic and numerical calculations are consistent with the complete absence of logarithmic terms of order (alpha/pi)^2 (Z alpha)^6 ln[(Z alpha)^(-2)] m_e c^2 for D states and all states with higher angular momenta. For higher excited P and D states, a number of poles from lower-lying levels have to subtracted in the numerical evaluation. We find that, surprisingly, the corrections of the "squared decay-rate type" are the numerically dominant contributions in the order (alpha/pi)^2 (Z alpha)^6 m_e c^2 for states with large angular momenta, and provide an estimate of the entire B_60-coefficient for Rydberg states with high angular momentum quantum numbers. Our results reach the predictive limits of the quantum electrodynamic theory of the Lamb shift.Comment: 14 pages, RevTe

    Recoil corrections in the hydrogen isoelectronic sequence

    Full text link
    A version of the Bethe-Salpeter equation appropriate for calculating recoil corrections in highly charged hydrogenlike ions is presented. The nucleus is treated as a scalar particle of charge Z, and the electron treated relativistically. The known recoil corrections of order m2/M(Zα)4m^2/M(Z\alpha)^4 are derived in both this formalism and in NRQED

    Lamb shift in muonic deuterium atom

    Full text link
    We present new investigation of the Lamb shift (2P_{1/2}-2S_{1/2}) in muonic deuterium (mu d) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear structure and recoil effects are calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift 202.4139 meV can be considered as a reliable estimate for the comparison with forthcoming experimental data.Comment: 24 pages, 11 figures. arXiv admin note: text overlap with arXiv:hep-ph/061229

    Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium

    Full text link
    We calculate three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the diagrams with the first order electron and muon polarization loop insertions in graphs with two exchanged photons. These corrections are enhanced by the large logarithm of the electron-muon mass ratio. The leading logarithm squared contribution was obtained a long time ago. Here we calculate the single-logarithmic and nonlogarithmic contributions. We previously calculated the three-loop radiative-recoil corrections generated by two-loop polarization insertions in the exchanged photons. The current paper therefore concludes calculation of all three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by diagrams with closed fermion loop insertions in the exchanged photons. The new results obtained here improve the theory of hyperfine splitting, and affect the value of the electron-muon mass ratio extracted from experimental data on the muonium hyperfine splitting.Comment: 27 pages, 6 figures, 7 table

    Radiative Corrections to One-Photon Decays of Hydrogenic Ions

    Full text link
    Radiative corrections to the decay rate of n=2 states of hydrogenic ions are calculated. The transitions considered are the M1 decay of the 2s state to the ground state and the E1(M2) decays of the 2p1/22p_{1/2} and 2p3/22p_{3/2} states to the ground state. The radiative corrections start in order α(Zα)2\alpha (Z \alpha)^2, but the method used sums all orders of ZαZ\alpha. The leading α(Zα)2\alpha (Z\alpha)^2 correction for the E1 decays is calculated and compared with the exact result. The extension of the calculational method to parity nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure

    Third-order many-body perturbation theory calculations for the beryllium and magnesium isoelectronic sequences

    Get PDF
    Relativistic third-order MBPT is applied to obtain energies of ions with two valence electrons in the no virtual-pair approximation (NVPA). A total of 302 third-order Goldstone diagrams are organized into 12 one-body and 23 two-body terms. Only third-order two-body terms and diagrams are presented here, owing to the fact that the one-body terms are identical to the previously studied third-order terms in monovalent ions. Dominant classes of diagrams are identified. The model potential is a Dirac-Hartree-Fock VN−2V^{N-2} potential, and B-spline basis functions in a cavity of finite radius are employed in the numerical calculations. The Breit interaction is taken into account through second order of perturbation theory and the lowest-order Lamb shift is also evaluated. Sample calculations are performed for berylliumlike ions with Z = 4--7, and for the magnesiumlike ion P IV. The third-order energies are in excellent agreement with measurement with an accuracy at 0.2% level for the cases considered. Comparisons are made with previous second-order MBPT results and with other calculations. The third-order energy correction is shown to be significant, improving second-order correlation energies by an order of magnitude

    Hadronic Vacuum Polarization Contribution to the Muonium Hyperfine Splitting

    Get PDF
    We discuss hadronic effects in the muonium hyperfine structure and derive an expression for the hadronic contribution to the hfs interval in form of the one-dimensional integral of the cross section of e+e- annihilation into hadrons. Higher-order hadronic contributions are also considered
    • 

    corecore