248 research outputs found

    Marginal Fermi Liquid with a Two-Dimensional Patched Fermi Surface

    Full text link
    We consider a model composed of Landau quasiparticle states with patched Fermi surfaces (FS) sandwiched by states with flat FS to simulate the ``cold'' spot regions in cuprates. We calculate the one particle irreducible function and the self-energy up to two-loop order. Using renormalization group arguments we show that in the forward scattering channel the renormalized coupling constant is never infrared stable due to the flat FS sectors. Furthemore we show that the self-energy scales with energy as ReΣωlnω{\rm Re} \Sigma \sim \omega \ln \omega as ω0\omega \to 0, and thus the Fermi liquid state within each FS patch is turned into a marginal Fermi liquid.Comment: 5 pages, 3 ps figure

    Evolution of String-Wall Networks and Axionic Domain Wall Problem

    Full text link
    We study the cosmological evolution of domain walls bounded by strings which arise naturally in axion models. If we introduce a bias in the potential, walls become metastable and finally disappear. We perform two dimensional lattice simulations of domain wall networks and estimate the decay rate of domain walls. By using the numerical results, we give a constraint for the bias parameter and the Peccei-Quinn scale. We also discuss the possibility to probe axion models by direct detection of gravitational waves produced by domain walls.Comment: 19 pages, 7 figures; revised version of the manuscript, accepted for publication in JCA

    TransCom N2O model inter-comparison - Part 2:Atmospheric inversion estimates of N2O emissions

    Get PDF
    This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal

    Get PDF
    Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, where the capital city of Nepal is located. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and analyzed the corresponding impacts on regional air quality. First, we estimated the on-road vehicle emissions in the valley using the International Vehicle Emissions (IVE) model with local emissions factors and the latest available data for vehicle registration. We also identified the locations of the brick kilns in the Kathmandu Valley and developed an emissions inventory for these kilns using emissions factors measured during the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) field campaign in April 2015. Our results indicate that the commonly used global emissions inventory, the Hemispheric Transport of Air Pollution (HTAP_v2.2), underestimates particulate matter emissions from vehicles in the Kathmandu Valley by a factor greater than 100. HTAP_v2.2 does not include the brick sector and we found that our sulfur dioxide (SO2) emissions estimates from brick kilns are comparable to 70 % of the total SO2 emissions considered in HTAP_v2.2. Next, we simulated air quality using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for April 2015 based on three different emissions scenarios: HTAP only, HTAP with updated vehicle emissions, and HTAP with both updated vehicle and brick kilns emissions. Comparisons between simulated results and observations indicate that the model underestimates observed surface elemental carbon (EC) and SO2 concentrations under all emissions scenarios. However, our updated estimates of vehicle emissions significantly reduced model bias for EC, while updated emissions from brick kilns improved model performance in simulating SO2. These results highlight the importance of improving local emissions estimates for air quality modeling. We further find that model overestimation of surface wind leads to underestimated air pollutant concentrations in the Kathmandu Valley. Future work should focus on improving local emissions estimates for other major and underrepresented sources (e.g., crop residue burning and garbage burning) with a high spatial resolution, as well as the model\u27s boundary layer representation, to capture strong spatial gradients of air pollutant concentrations

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood-and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Get PDF
    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19gkg-1 with major contributions from OC (7%), sulfate expected to be in the form of sulfuric acid (31.9%), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13gkg-1, with major contributions from OC (63.2%), sulfate (23.4%), and ammonium (16%). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4±1.2gkg-1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125±23gkg-1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from three-stone cooking fires (7.6-73gkg-1), followed by traditional mud stoves (5.3-19.7gkg-1), mud stoves with a chimney for exhaust (3.0-6.8gkg-1), rocket stoves (1.5-7.2gkg-1), induced-draft stoves (1.2-5.7gkg-1), and the bhuse chulo stove (3.2gkg-1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8±1.3 to 0.71±0.45gkg-1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Get PDF
    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, inm2kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (gkg-1 fuel burned). The trace gas measurements provide EFs (gkg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ∼ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63±0.68) was significantly higher than for wood-fuel cooking fires (3.01±0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00±1.33gkg-1), organic acids (7.66±6.90gkg-1), and HCN (2.01±1.25gkg-1), where the latter could contribute to satellite observations of high levels of HCN in the lower stratosphere above the Asian monsoon. HCN was also emitted in significant quantities by several non-biomass burning sources. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) were major emissions from both dung- (∼4.5gkg-1) and wood-fuel (∼1.5gkg-1) cooking fires, and a simple method to estimate indoor exposure to the many measured important air toxics is described. Biogas emerged as the cleanest cooking technology of approximately a dozen stove-fuel combinations measured. Crop residue burning produced relatively high emissions of oxygenated organic compounds (∼12gkg-1) and SO2 (2.54±1.09gkg-1). Two brick kilns co-firing different amounts of biomass with coal as the primary fuel produced contrasting results. A zigzag kiln burning mostly coal at high efficiency produced larger amounts of BC, HF, HCl, and NOx, with the halogenated emissions likely coming from the clay. The clamp kiln (with relatively more biomass fuel) produced much greater quantities of most individual organic gases, about twice as much BrC, and significantly more known and likely organic aerosol precursors. Both kilns were significant SO2 sources with their emission factors averaging 12.8±0.2gkg-1. Mixed-garbage burning produced significantly more BC (3.3±3.88gkg-1) and BTEX (∼4.5gkg-1) emissions than in previous measurements. For all fossil fuel sources, diesel burned more efficiently than gasoline but produced larger NOx and aerosol emission factors. Among the least efficient sources sampled were gasoline-fueled motorcycles during start-up and idling for which the CO EF was on the order of ∼700gkg-1 - or about 10 times that of a typical biomass fire. Minor motorcycle servicing led to minimal if any reduction in gaseous pollutants but reduced particulate emissions, as detailed in a companion paper (Jayarathne et al., 2016). A small gasoline-powered generator and an insect repellent fire were also among the sources with the highest emission factors for pollutants. These measurements begin to address the critical data gap for these important, undersampled sources, but due to their diversity and abundance, more work is needed

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron
    corecore