1,809 research outputs found

    Formation of laser plasma channels in a stationary gas

    Full text link
    The formation of plasma channels with nonuniformity of about +- 3.5% has been demonstrated. The channels had a density of 1.2x10^19 cm-3 with a radius of 15 um and with length >= 2.5 mm. The channels were formed by 0.3 J, 100 ps laser pulses in a nonflowing gas, contained in a cylindrical chamber. The laser beam passed through the chamber along its axis via pinholes in the chamber walls. A plasma channel with an electron density on the order of 10^18 - 10^19 cm-3 was formed in pure He, N2, Ar, and Xe. A uniform channel forms at proper time delays and in optimal pressure ranges, which depend on the sort of gas. The influence of the interaction of the laser beam with the gas leaking out of the chamber through the pinholes was found insignificant. However, the formation of an ablative plasma on the walls of the pinholes by the wings of the radial profile of the laser beam plays an important role in the plasma channel formation and its uniformity. A low current glow discharge initiated in the chamber slightly improves the uniformity of the plasma channel, while a high current arc discharge leads to the formation of overdense plasma near the front pinhole and further refraction of the laser beam. The obtained results show the feasibility of creating uniform plasma channels in non-flowing gas targets.Comment: 15 pages, 7 figures, submitted to Physics of Plasma

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    Regularisation, the BV method, and the antibracket cohomology

    Get PDF
    We review the Lagrangian Batalin--Vilkovisky method for gauge theories. This includes gauge fixing, quantisation and regularisation. We emphasize the role of cohomology of the antibracket operation. Our main example is d=2d=2 gravity, for which we also discuss the solutions for the cohomology in the space of local integrals. This leads to the most general form for the action, for anomalies and for background charges.Comment: 12 pages, LaTeX, Preprint-KUL-TF-94/2

    Domain wall entropy of the bimodal two-dimensional Ising spin glass

    Full text link
    We report calculations of the domain wall entropy for the bimodal two-dimensional Ising spin glass in the critical ground state. The L * L system sizes are large with L up to 256. We find that it is possible to fit the variance of the domain wall entropy to a power function of L. However, the quality of the data distributions are unsatisfactory with large L > 96. Consequently, it is not possible to reliably determine the fractal dimension of the domain walls.Comment: 4 pages, 2 figures, submitted to PR

    Subextensive singularity in the 2D ±J\pm J Ising spin glass

    Full text link
    The statistics of low energy states of the 2D Ising spin glass with +1 and -1 bonds are studied for L×LL \times L square lattices with L≤48L \le 48, and pp = 0.5, where pp is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions. The behavior of the density of states near the ground state energy is analyzed as a function of LL, in order to obtain the low temperature behavior of the model. For large finite LL there is a range of TT in which the heat capacity is proportional to T5.33±0.12T^{5.33 \pm 0.12}. The range of TT in which this behavior occurs scales slowly to T=0T = 0 as LL increases. Similar results are found for pp = 0.25. Our results indicate that this model probably obeys the ordinary hyperscaling relation dν=2−αd \nu = 2 - \alpha, even though Tc=0T_c = 0. The existence of the subextensive behavior is attributed to long-range correlations between zero-energy domain walls, and evidence of such correlations is presented.Comment: 13 pages, 7 figures; final version, to appear in J. Stat. Phy

    Power-law correlations and orientational glass in random-field Heisenberg models

    Full text link
    Monte Carlo simulations have been used to study a discretized Heisenberg ferromagnet (FM) in a random field on simple cubic lattices. The spin variable on each site is chosen from the twelve [110] directions. The random field has infinite strength and a random direction on a fraction x of the sites of the lattice, and is zero on the remaining sites. For x = 0 there are two phase transitions. At low temperatures there is a [110] FM phase, and at intermediate temperature there is a [111] FM phase. For x > 0 there is an intermediate phase between the paramagnet and the ferromagnet, which is characterized by a |k|^(-3) decay of two-spin correlations, but no true FM order. The [111] FM phase becomes unstable at a small value of x. At x = 1/8 the [110] FM phase has disappeared, but the power-law correlated phase survives.Comment: 8 pages, 12 Postscript figure
    • …
    corecore