1,809 research outputs found
Formation of laser plasma channels in a stationary gas
The formation of plasma channels with nonuniformity of about +- 3.5% has been
demonstrated. The channels had a density of 1.2x10^19 cm-3 with a radius of 15
um and with length >= 2.5 mm. The channels were formed by 0.3 J, 100 ps laser
pulses in a nonflowing gas, contained in a cylindrical chamber. The laser beam
passed through the chamber along its axis via pinholes in the chamber walls. A
plasma channel with an electron density on the order of 10^18 - 10^19 cm-3 was
formed in pure He, N2, Ar, and Xe. A uniform channel forms at proper time
delays and in optimal pressure ranges, which depend on the sort of gas. The
influence of the interaction of the laser beam with the gas leaking out of the
chamber through the pinholes was found insignificant. However, the formation of
an ablative plasma on the walls of the pinholes by the wings of the radial
profile of the laser beam plays an important role in the plasma channel
formation and its uniformity. A low current glow discharge initiated in the
chamber slightly improves the uniformity of the plasma channel, while a high
current arc discharge leads to the formation of overdense plasma near the front
pinhole and further refraction of the laser beam. The obtained results show the
feasibility of creating uniform plasma channels in non-flowing gas targets.Comment: 15 pages, 7 figures, submitted to Physics of Plasma
Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models
Monte Carlo simulations have been used to study a vortex-free XY ferromagnet
with a random field or a random anisotropy on simple cubic lattices. In the
random field case, which can be related to a charge-density wave pinned by
random point defects, it is found that long-range order is destroyed even for
weak randomness. In the random anisotropy case, which can be related to a
randomly pinned spin-density wave, the long-range order is not destroyed and
the correlation length is finite. In both cases there are many local minima of
the free energy separated by high entropy barriers. Our results for the random
field case are consistent with the existence of a Bragg glass phase of the type
discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise
Regularisation, the BV method, and the antibracket cohomology
We review the Lagrangian Batalin--Vilkovisky method for gauge theories. This
includes gauge fixing, quantisation and regularisation. We emphasize the role
of cohomology of the antibracket operation. Our main example is gravity,
for which we also discuss the solutions for the cohomology in the space of
local integrals. This leads to the most general form for the action, for
anomalies and for background charges.Comment: 12 pages, LaTeX, Preprint-KUL-TF-94/2
Domain wall entropy of the bimodal two-dimensional Ising spin glass
We report calculations of the domain wall entropy for the bimodal
two-dimensional Ising spin glass in the critical ground state. The L * L system
sizes are large with L up to 256. We find that it is possible to fit the
variance of the domain wall entropy to a power function of L. However, the
quality of the data distributions are unsatisfactory with large L > 96.
Consequently, it is not possible to reliably determine the fractal dimension of
the domain walls.Comment: 4 pages, 2 figures, submitted to PR
Subextensive singularity in the 2D Ising spin glass
The statistics of low energy states of the 2D Ising spin glass with +1 and -1
bonds are studied for square lattices with , and =
0.5, where is the fraction of negative bonds, using periodic and/or
antiperiodic boundary conditions. The behavior of the density of states near
the ground state energy is analyzed as a function of , in order to obtain
the low temperature behavior of the model. For large finite there is a
range of in which the heat capacity is proportional to .
The range of in which this behavior occurs scales slowly to as
increases. Similar results are found for = 0.25. Our results indicate that
this model probably obeys the ordinary hyperscaling relation , even though . The existence of the subextensive behavior is
attributed to long-range correlations between zero-energy domain walls, and
evidence of such correlations is presented.Comment: 13 pages, 7 figures; final version, to appear in J. Stat. Phy
Power-law correlations and orientational glass in random-field Heisenberg models
Monte Carlo simulations have been used to study a discretized Heisenberg
ferromagnet (FM) in a random field on simple cubic lattices. The spin variable
on each site is chosen from the twelve [110] directions. The random field has
infinite strength and a random direction on a fraction x of the sites of the
lattice, and is zero on the remaining sites. For x = 0 there are two phase
transitions. At low temperatures there is a [110] FM phase, and at intermediate
temperature there is a [111] FM phase. For x > 0 there is an intermediate phase
between the paramagnet and the ferromagnet, which is characterized by a
|k|^(-3) decay of two-spin correlations, but no true FM order. The [111] FM
phase becomes unstable at a small value of x. At x = 1/8 the [110] FM phase has
disappeared, but the power-law correlated phase survives.Comment: 8 pages, 12 Postscript figure
- …