616 research outputs found

    N=2 minimal conformal field theories and matrix bifactorisations of x^d

    No full text
    We establish an action of the representations of N=2-superconformal symmetry on the category of matrix factorisations of the potentials x^d and x^d-y^d for d odd. More precisely we prove a tensor equivalence between (a) the category of Neveu–Schwarz-type representa-tions of the N = 2 minimal super vertex operator algebra at central charge 3–6/d, and (b) a full subcategory of graded matrix factorisations of the potential x^d − y^d . The subcategory in (b) is given by permutation-type matrix factorisations with consecutive index sets. The physical motivation for this result is the Landau–Ginzburg/conformal field theory correspondence, where it amounts to the equivalence of a subset of defects on both sides of the correspondence. Our work builds on results by Brunner and Roggenkamp [BR], where an isomorphism of fusion rules was established

    Symplectic fermions and a quasi-Hopf algebra structure on Uˉisl(2)\bar{U}_i sl(2)

    Full text link
    We consider the (finite-dimensional) small quantum group Uˉqsl(2)\bar{U}_q sl(2) at q=iq=i. We show that Uˉisl(2)\bar{U}_i sl(2) does not allow for an R-matrix, even though U⊗V≅V⊗UU \otimes V \cong V \otimes U holds for all finite-dimensional representations U,VU,V of Uˉisl(2)\bar{U}_i sl(2). We then give an explicit coassociator Φ\Phi and an R-matrix RR such that Uˉisl(2)\bar{U}_i sl(2) becomes a quasi-triangular quasi-Hopf algebra. Our construction is motivated by the two-dimensional chiral conformal field theory of symplectic fermions with central charge c=−2c=-2. There, a braided monoidal category, SF\mathcal{SF}, has been computed from the factorisation and monodromy properties of conformal blocks, and we prove that Rep (Uˉisl(2),Φ,R)\mathrm{Rep}\,(\bar{U}_i sl(2),\Phi,R) is braided monoidally equivalent to SF\mathcal{SF}.Comment: 40pp, 11 figures; v2: few very minor corrections for the final version in Journal of Algebr

    Finite size effects in perturbed boundary conformal field theories

    Full text link
    We discuss the finite-size properties of a simple integrable quantum field theory in 1+1 dimensions with non-trivial boundary conditions. Novel off-critical identities between cylinder partition functions of models with differing boundary conditions are derived.Comment: 7 pages, 11 figures, JHEP proceedings style. Uses epsfig, amssymb. Talk given at the conference `Nonperturbative Quantum Effects 2000', Pari

    STEM Students and Faculty See Value in a Classroom Belonging Exercise

    Get PDF
    Enhancing belonging in undergraduate STEM classrooms are pivotal for student success. This study examines a belonging exercise\u27s implementation and impact in multiple STEM courses from 2017 to 2019. Faculty perspectives were gathered from a survey of 92 respondents, indicating a high level of perceived benefit (92%). Coded responses highlighted shared experiences and diversity mindset promotion. 30% explicitly mentioned benefits for both students and instructors. Additionally, 76% of faculty saw potential of belonging exercises in their own classrooms. It is important to promote using belonging interventions and also understand how STEM students perceive their value and utility. Three focus groups with PSU STEM students were designed and conducted. Students shared their perceptions of campus belonging. Following this, they reviewed the OLL exercise plus original data. Finally, they were presented with faculty responses, and asked to share their opinions and reactions (i.e. surprised, dismayed, or in agreement with the faculty responses). Collected responses from the focus groups were coded for analysis. Our goal was to understand how STEM students value belonging interventions and to acquire qualitative data to understand students\u27 views and contradictions regarding the current system and their belief in greater success and persistence with a stronger sense of belonging

    Perturbed Defects and T-Systems in Conformal Field Theory

    Full text link
    Defect lines in conformal field theory can be perturbed by chiral defect fields. If the unperturbed defects satisfy su(2)-type fusion rules, the operators associated to the perturbed defects are shown to obey functional relations known from the study of integrable models as T-systems. The procedure is illustrated for Virasoro minimal models and for Liouville theory.Comment: 24 pages, 13 figures; v2: typos corrected, in particular in (2.10) and app. A.2, version to appear in J.Phys.

    A reason for fusion rules to be even

    Full text link
    We show that certain tensor product multiplicities in semisimple braided sovereign tensor categories must be even. The quantity governing this behavior is the Frobenius-Schur indicator. The result applies in particular to the representation categories of large classes of groups, Lie algebras, Hopf algebras and vertex algebras.Comment: 6 pages, LaTe

    Superconformal defects in the tricritical Ising model

    Full text link
    We study superconformal defect lines in the tricritical Ising model in 2 dimensions. By the folding trick, a superconformal defect is mapped to a superconformal boundary of the N=1 superconformal unitary minimal model of c=7/5 with D_6-E_6 modular invariant. It turns out that the complete set of the boundary states of c=7/5 D_6-E_6 model cannot be interpreted as the consistent set of superconformal defects in the tricritical Ising model since it does not contain the "no defect" boundary state. Instead, we find a set of 18 consistent superconformal defects including "no defect" and satisfying the Cardy condition. This set also includes some defects which are not purely transmissive or purely reflective.Comment: 25 pages, 3 figures. v2: typos corrected. v3: clarification about spin structure aligned theory added, references adde

    AlphaFold predicts the most complex protein knot and composite protein knots

    Full text link
    The computer artificial intelligence system AlphaFold has recently predicted previously unknown three-dimensional structures of thousands of proteins. Focusing on the subset with high-confidence scores, we algorithmically analyze these predictions for cases where the protein backbone exhibits rare topological complexity, i.e. knotting. Amongst others, we discovered a 717_1-knot, the most topologically complex knot ever found in a protein, as well several 6-crossing composite knots comprised of two methyltransferase or carbonic anhydrase domains, each containing a simple trefoil knot. These deeply embedded composite knots occur evidently by gene duplication and interconnection of knotted dimers. Finally, we report two new five-crossing knots including the first 515_1-knot. Our list of analyzed structures forms the basis for future experimental studies to confirm these novel knotted topologies and to explore their complex folding mechanisms.Comment: This article appeared openly accessible in M. A. Brems et al., Protein Science. 2022; 31( 8):e4380 and may be found at https://doi.org/10.1002/pro.438

    Twisted boundary states in c=1 coset conformal field theories

    Get PDF
    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the diagonal modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n)_1 \oplus so(2n)_1/so(2n)_2, which is equivalent with the orbifold S^1/\Z_2. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield the conformal boundary states that preserve only the Virasoro algebra.Comment: 44 pages, 1 figure; (v2) minor change in section 2.3, references adde
    • …
    corecore