530 research outputs found
Computation of the inverse Laplace Transform based on a Collocation method which uses only real values
We develop a numerical algorithm for inverting a Laplace transform (LT), based on Laguerre polynomial series expansion of the
inverse function under the assumption that the LT is known on the real axis only. The method belongs to the class of Collocation
methods (C-methods), and is applicable when the LT function is regular at infinity. Difficulties associated with these problems are due
to their intrinsic ill-posedness. The main contribution of this paper is to provide computable estimates of truncation, discretization,
conditioning and roundoff errors introduced by numerical computations. Moreover, we introduce the pseudoaccuracy which will be
used by the numerical algorithm in order to provide uniform scaled accuracy of the computed approximation for any x with respect
to ex . These estimates are then employed to dynamically truncate the series expansion. In other words, the number of the terms of
the series acts like the regularization parameter which provides the trade-off between errors.
With the aim to validate the reliability and usability of the algorithm experiments were carried out on several test functions
The Diagnosis of Mesothelioma in Forensic Pathology
5nonenoneGONGOLO F; BROLLO A; RIZZARDI C; COSTANTINIDES F; MELATO M.Gongolo, F; Brollo, A; Rizzardi, Clara; Costantinides, Fulvio; Melato, Maur
Nano-imaging of environmental dust in human lung tissue by soft and hard X-ray fluorescence microscopy
It is well recognized that a large number of pulmonary diseases are induced by the effects of inhaled particulates. Anthracosis is defined as an asymptomatic, mild form of pneumoconiosis caused by the accumulation of \u201cblack carbon\u201d in the lungs due to repeated exposure to air pollution or inhalation of smoke or coal dust particles. Since the human population is progressively exposed to an increasing number and doses of anthropogenic micro and nano particles/compounds, there is a pressing urgency to explore toxicological impact arising from these exposures and the molecular mechanisms driving the body defense or possible related diseases. The toxicity mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of synchrotron radiation-based (SR-based) nano X-ray fluorescence (XRF) imaging and soft X-ray microscopy was used to chemically characterize environmental particulates (anthracosis) in lung tissues from urban subjects with the aim of better understanding the complex nature of related lungs' deposits. High-resolution XRF analyses performed at ESRF and Elettra synchrotrons allowed discriminating single particles in the heterogeneous aggregates found in the lung tissue. The small particles have variable composition resulting from the different combinations of Ti with O, K and Si, Al and Si, or Zn and Fe with O. Interestingly, simultaneous absorption and phase contrast images showed the particulate morphology and allowed to predict the presence of very dense nanoparticles or high concentration of heavy elements
Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy
We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases
Culture-dependent and sequencing methods revealed the absence of a bacterial community residing in the urine of healthy cats
A growing number of studies suggest that the lower urinary tract of humans and dogs can harbor a urinary microbiota. Nevertheless, a certain concern has developed that the microbiota reported could be due to unaccounted contamination, especially in low-biomass samples. The aim of this study was to investigate the bacterial community which populates the urine of healthy cats using two approaches: a culture-dependent approach which consisted of the expanded quantitative urine culture (EQUC) techniques capable of identifying live bacteria not growing in standard urine cultures, and a culture-independent approach which consisted of 16S ribosomal RNA next generation sequencing (16S rRNA NGS) capable of identifying bacterial DNA and exploring microbial diversity with high resolution. To avoid confounding factors of possible bacterial contamination, the urine was sampled using ultrasound-guided cystocentesis, and several sample controls and negative controls were analyzed. The urine sampled from the 10 cats included in the study showed no bacterial growth in the EQUC procedure. Although several reads were successfully originated using 16S rRNA NGS, a comparable pattern was observed between urine samples and the negative control, and no taxa were statistically accepted as non-contaminant. Taken together, the results obtained allowed stating that no viable bacteria were present in the urine of healthy cats without lower urinary tract disease and urinary tract infections, and that the bacterial DNA detected was of contaminant origin
Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays
BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials
- …