3,622 research outputs found
Brownian scattering of a spinon in a Luttinger liquid
We consider strongly interacting one-dimensional electron liquids where
elementary excitations carry either spin or charge. At small temperatures a
spinon created at the bottom of its band scatters off low-energy spin- and
charge-excitations and follows the diffusive motion of a Brownian particle in
momentum space. We calculate the mobility characterizing these processes, and
show that the resulting diffusion coefficient of the spinon is parametrically
enhanced at low temperatures compared to that of a mobile impurity in a
spinless Luttinger liquid. We briefly discuss that this hints at the relevance
of spin in the process of equilibration of strongly interacting one-dimensional
electrons, and comment on implications for transport in clean single channel
quantum wires
Interaction-induced backscattering in short quantum wires
We study interaction-induced backscattering in clean quantum wires with
adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes
such systems to a fully equilibrated steady state only on length scales
exponentially large in the ratio of bandwidth of excitations and temperature.
Here we focus on shorter wires in which full equilibration is not accomplished.
Signatures of relaxation then are due to backscattering of hole excitations
close to the band bottom which perform a diffusive motion in momentum space
while scattering from excitations at the Fermi level. This is reminiscent to
the first passage problem of a Brownian particle and, regardless of the
interaction strength, can be described by an inhomogeneous Fokker-Planck
equation. From general solutions of the latter we calculate the hole
backscattering rate for different wire lengths and discuss the resulting length
dependence of interaction-induced correction to the conductance of a clean
single channel quantum wire.Comment: 10 pages, 4 figure
Disorder induced local density of states oscillations on narrow Ag(111) terraces
The local density of states of Ag(111) has been probed in detail on
disordered terraces of varying width by dI/dV-mapping with a scanning tunneling
microscope at low temperatures. Apparent shifts of the bottom of the
surface-state band edge from terrace induced confinement are observed.
Disordered terraces show interesting contrast reversals in the dI/dV maps as a
function of tip-sample voltage polarity with details that depend on the average
width of the terrace and the particular edge profile. In contrast to perfect
terraces with straight edges, standing wave patterns are observed parallel to
the step edges, i.e. in the non-confined direction. Scattering calculations
based on the Ag(111) surface states reproduce these spatial oscillations and
all the qualitative features of the standing wave patterns, including the
polarity-dependent contrast reversals.Comment: 19 pages, 12 figure
Endstates in multichannel spinless p-wave superconducting wires
Multimode spinless p-wave superconducting wires with a width W much smaller
than the superconducting coherence length \xi are known to have multiple
low-energy subgap states localized near the wire's ends. Here we compare the
typical energies of such endstates for various terminations of the wire: A
superconducting wire coupled to a normal-metal stub, a weakly disordered
superconductor wire and a wire with smooth confinement. Depending on the
termination, we find that the energies of the subgap states can be higher or
lower than for the case of a rectangular wire with hard-wall boundaries.Comment: 10 pages, 7 figure
In vitro testing for diagnosis of idiosyncratic adverse drug reactions: Implications for pathophysiology
Idiosyncratic drug reactions (IDRs) represent a major health problem, as they are unpredictable, often severe and can be life threatening. The low incidence of IDRs makes their detection during drug development stages very difficult causing many post-marketing drug withdrawals and black box warnings. The fact that IDRs are always not predictable based on the drug\u27s known pharmacology and have no clear dose-effect relationship with the culprit drug renders diagnosis of IDRs very challenging, if not impossible, without the aid of a reliable diagnostic test. The drug provocation test (DPT) is considered the gold standard for diagnosis of IDRs but it is not always safe to perform on patients. In vitro tests have the advantage of bearing no potential harm to patients. However, available in vitro tests are not commonly used clinically because of lack of validation and their complex and expensive procedures. This review discusses the current role of in vitro diagnostic testing for diagnosis of IDRs and gives a brief account of their technical and mechanistic aspects. Advantages, disadvantages and major challenges that prevent these tests from becoming mainstream diagnostic tools are also discussed here
A realistic heat bath: theory and application to kink-antikink dynamics
We propose a new method of studying a real-time canonical evolution of
field-theoretic systems with boundary coupling to a realistic heat bath. In the
free-field case the method is equivalent to an infinite extension of the system
beyond the boundary, while in the interacting case the extension of the system
is done in linear approximation. We use this technique to study kink-antikink
dynamics in field theory in 1+1 dimensions.Comment: 21 pages including 7 figures (the shar file includes the tex file + 7
postscript files for figures). IUHET-241, IPS-92-29, UALG-PHYS-1
MLS: Airplane system modeling
Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented
- …