12 research outputs found
Workflow-centric research objects: First class citizens in scholarly discourse.
A workflow-centric research object bundles a workflow, the provenance of the results obtained by its enactment, other digital objects that are relevant for the experiment (papers, datasets, etc.), and annotations that semantically describe all these objects. In this paper, we propose a model to specify workflow-centric research objects, and show how the model can be grounded using semantic technologies and existing vocabularies, in particular the Object Reuse and Exchange (ORE) model and the Annotation Ontology (AO).We describe the life-cycle of a research object, which resembles the life-cycle of a scienti?c experiment
Structuring research methods and data with the research object model:genomics workflows as a case study
Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e. g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. Results: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as "which particular data was input to a particular workflow to test a particular hypothesis?", and "which particular conclusions were drawn from a particular workflow?". Conclusions: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well. Availability: The Research Object is available at http://www.myexperiment.org/packs/428 The Wf4Ever Research Object Model is available at http://wf4ever.github.io/r
Factors associated with mortality in HIV-infected and uninfected patients with pulmonary tuberculosis
<p>Abstract</p> <p>Background</p> <p>HIV has fuelled the TB epidemic in sub-Saharan Africa. Mortality in patients co-infected with TB and HIV is high. Managing factors influencing mortality in TB patients might help reducing it. This study investigates factors associated with mortality including patients' HIV sero-status, CD4 cell count, laboratory, nutritional and demographic characteristics in AFB smear positive pulmonary TB patients.</p> <p>Methods</p> <p>We studied 887 sputum smear positive PTB patients, between 18 and 65 years of age receiving standard 8 months anti-TB treatment. Demographic, anthropometric and laboratory data including HIV, CD4 and other tests were collected at baseline and at regular intervals. Patients were followed for a median period of 2.5 years.</p> <p>Results</p> <p>Of the 887 participants, 155 (17.5%) died, of whom 90.3% (140/155) were HIV-infected, a fatality of 29.7% (140/471) compared to 3.6% (15/416) among HIV-uninfected. HIV infection, age, low Karnofsky score, CD4 cell counts and hemoglobin, high viral load, and oral thrush were significantly associated with high mortality in all patients.</p> <p>Conclusion</p> <p>Mortality among HIV-infected TB patients is high despite the use of effective anti-TB therapy. Most deaths occur after successful completion of therapy, an indication that patients die from causes other than TB. HIV infection is the strongest independent predictor of mortality in this cohort.</p
Workflow-centric research objects:First class citizens in scholarly discourse
A workflow-centric research object bundles a workflow, the provenance of the results obtained by its enactment, other digital objects that are relevant for the experiment (papers, datasets, etc.), and annotations that semantically describe all these objects. In this paper, we propose a model to specify workflow-centric research objects, and show how the model can be grounded using semantic technologies and existing vocabularies, in particular the Object Reuse and Exchange (ORE) model and the Annotation Ontology (AO).We describe the life-cycle of a research object, which resembles the life-cycle of a scientific experiment.</p
Workflow-centric research objects:First class citizens in scholarly discourse
A workflow-centric research object bundles a workflow, the provenance of the results obtained by its enactment, other digital objects that are relevant for the experiment (papers, datasets, etc.), and annotations that semantically describe all these objects. In this paper, we propose a model to specify workflow-centric research objects, and show how the model can be grounded using semantic technologies and existing vocabularies, in particular the Object Reuse and Exchange (ORE) model and the Annotation Ontology (AO).We describe the life-cycle of a research object, which resembles the life-cycle of a scientific experiment.</p
RO-Crate Metadata Specification 1.0
Web-version: https://w3id.org/ro/crate/1.0
This document specifies a method, known as RO-Crate (Research Object Crate), of organizing file-based data with associated metadata, using linked data principles, in both human and machine readable formats, with the ability to include additional domain-specific metadata.
The core of RO-Crate is a JSON-LD file, the RO-Crate Metadata File, named ro-crate-metadata.jsonld. This file contains structured metadata about the dataset as a whole (the Root Data Entity) and, optionally, about some or all of its files. This provides a simple way to, for example, assert the authors (e.g. people, organizations) of the RO-Crate or one its files, or to capture more complex provenance for files, such as how they were created using software and equipment.
While providing the formal specification for RO-Crate, this document also aims to be a practical guide for software authors to create tools for generating and consuming research data packages, with explanation by examples.Recommendation published by researchobject.org - see https://w3id.org/ro/crate/1.0 for web version
RO-Crate Metadata Specification 1.1
Web-version: https://w3id.org/ro/crate/1.1
This document specifies a method, known as RO-Crate (Research Object Crate), of organizing file-based data with associated metadata, using linked data principles, in both human and machine readable formats, with the ability to include additional domain-specific metadata.
The core of RO-Crate is a JSON-LD file, the RO-Crate Metadata File, named ro-crate-metadata.json. This file contains structured metadata about the dataset as a whole (the Root Data Entity) and, optionally, about some or all of its files. This provides a simple way to, for example, assert the authors (e.g. people, organizations) of the RO-Crate or one its files, or to capture more complex provenance for files, such as how they were created using software and equipment.
While providing the formal specification for RO-Crate, this document also aims to be a practical guide for software authors to create tools for generating and consuming research data packages, with explanation by examples.Recommendation published by researchobject.org - see https://w3id.org/ro/crate/1.1 for web version