1,368 research outputs found
The onset of solar cycle 24: What global acoustic modes are telling us
We study the response of the low-degree, solar p-mode frequencies to the
unusually extended minimum of solar surface activity since 2007. A total of
4768 days of observations collected by the space-based, Sun-as-a-star
helioseismic GOLF instrument are analyzed. A multi-step iterative
maximum-likelihood fitting method is applied to subseries of 365 days and 91.25
days to extract the p-mode parameters. Temporal variations of the l=0, 1, and 2
p-mode frequencies are then obtained from April 1996 to May 2009. While the
p-mode frequency shifts are closely correlated with solar surface activity
proxies during the past solar cycles, the frequency shifts of the l=0 and l=2
modes show an increase from the second half of 2007, when no significant
surface activity is observable. On the other hand, the l=1 modes follow the
general decreasing trend of the solar surface activity. The different
behaviours between the l=0 and l=2 modes and the l=1 modes can be interpreted
as different geometrical responses to the spatial distribution of the solar
magnetic field beneath the surface of the Sun. The analysis of the low-degree,
solar p-mode frequency shifts indicates that the solar activity cycle 24
started late 2007, despite the absence of activity on the solar surface.Comment: To be accepted by A&A (with minor revisions), 4 pages, 3 figures, 1
tabl
The acoustic cut-off frequency of the Sun and the solar magnetic activity cycle
The acoustic cut-off frequency -the highest frequency for acoustic solar
eigenmodes- is an important parameter of the solar atmosphere as it determines
the upper boundary of the p-mode resonant cavities. At frequencies beyond this
value, acoustic disturbances are no longer trapped but traveling waves.
Interference amongst them give rise to higher-frequency peaks -the pseudomodes-
in the solar acoustic spectrum. The pseudomodes are shifted slightly in
frequency with respect to p modes making possible the use of pseudomodes to
determine the acoustic cut-off frequency. Using data from GOLF and VIRGO
instruments on board the SOHO spacecraft, we calculate the acoustic cut-off
frequency using the coherence function between both the velocity and intensity
sets of data. By using data gathered by these instruments during the entire
lifetime of the mission (1996 till the present), a variation in the acoustic
cut-off frequency with the solar magnetic activity cycle is found.Comment: Paper accepted in ApJ. 26 Pages, 9 figure
Quasi-filiform Lie algebras of great length
AbstractWe give a complete classification up to isomorphisms of complex graded quasi-filiform Lie algebras of dimension nâ©Ÿ15 with a finite number of subspaces greater than their nilindex nâ2
Solar cycle variations of large frequency separations of acoustic modes: Implications for asteroseismology
We have studied solar cycle changes in the large frequency separations that
can be observed in Birmingham Solar Oscillations Network (BiSON) data. The
large frequency separation is often one of the first outputs from asteroseismic
studies because it can help constrain stellar properties like mass and radius.
We have used three methods for estimating the large separations: use of
individual p-mode frequencies, computation of the autocorrelation of
frequency-power spectra, and computation of the power spectrum of the power
spectrum. The values of the large separations obtained by the different methods
are offset from each other and have differing sensitivities to the realization
noise. A simple model was used to predict solar cycle variations in the large
separations, indicating that the variations are due to the well-known solar
cycle changes to mode frequency. However, this model is only valid over a
restricted frequency range. We discuss the implications of these results for
asteroseismology.Comment: 9 pages, 11 figures, accepted for publication in MNRAS, references
updated, corrections following proof
Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo?
In addition to the well-known 11-year solar cycle, the Sun's magnetic
activity also shows significant variation on shorter time scales, e.g. between
one and two years. We observe a quasi-biennial (2-year) signal in the solar
p-mode oscillation frequencies, which are sensitive probes of the solar
interior. The signal is visible in Sun-as-a-star data observed by different
instruments and here we describe the results obtained using BiSON, GOLF, and
VIRGO data. Our results imply that the 2-year signal is susceptible to the
influence of the main 11-year solar cycle. However, the source of the signal
appears to be separate from that of the 11-year cycle. We speculate as to
whether it might be the signature of a second dynamo, located in the region of
near-surface rotational shear.Comment: 6 pages, 2 figures, proceedings for SOHO-24/GONG 2010 conference, to
be published in JPC
Quasi-Biennial variations in helioseismic frequencies: Can the source of the variation be localized?
We investigate the spherical harmonic degree (l) dependence of the "seismic"
quasi-biennial oscillation (QBO) observed in low-degree solar p-mode
frequencies, using Sun-as-a-star Birmingham Solar Oscillations Network (BiSON)
data. The amplitude of the seismic QBO is modulated by the 11-yr solar cycle,
with the amplitude of the signal being largest at solar maximum. The amplitude
of the signal is noticeably larger for the l=2 and 3 modes than for the l=0 and
1 modes. The seismic QBO shows some frequency dependence but this dependence is
not as strong as observed in the 11-yr solar cycle. These results are
consistent with the seismic QBO having its origins in shallow layers of the
interior (one possibility being the bottom of the shear layer extending 5per
cent below the solar surface). Under this scenario the magnetic flux
responsible for the seismic QBO is brought to the surface (where its influence
on the p modes is stronger) by buoyant flux from the 11-yr cycle, the strong
component of which is observed at predominantly low-latitudes. As the l=2 and 3
modes are much more sensitive to equatorial latitudes than the l=0 and 1 modes
the influence of the 11-yr cycle on the seismic QBO is more visible in l=2 and
3 mode frequencies. Our results imply that close to solar maximum the main
influence of the seismic QBO occurs at low latitudes (<45 degrees), which is
where the strong component of the 11-yr solar cycle resides. To isolate the
latitudinal dependence of the seismic QBO from the 11-yr solar cycle we must
consider epochs when the 11-yr solar cycle is weak. However, away from solar
maximum, the amplitude of the seismic QBO is weak making the latitudinal
dependence hard to constrain.Comment: 10 pages, 6 figures, accepted for publication in MNRA
Misleading variations in estimated rotational frequency splittings of solar p modes: Consequences for helio- and asteroseismology
The aim of this paper is to investigate whether there are any 11-yr or
quasi-biennial solar cycle-related variations in solar rotational splitting
frequencies of low-degree solar p modes. Although no 11-yr signals were
observed, variations on a shorter timescale (~2yrs) were apparent. We show that
the variations arose from complications/artifacts associated with the
realization noise in the data and the process by which the data were analyzed.
More specifically, the realization noise was observed to have a larger effect
on the rotational splittings than accounted for by the formal uncertainties.
When used to infer the rotation profile of the Sun these variations are not
important. The outer regions of the solar interior can be constrained using
higher-degree modes. While the variations in the low-l splittings do make large
differences to the inferred rotation rate of the core, the core rotation rate
is so poorly constrained, even by low-l modes, that the different inferred
rotation profiles still agree within their respective 1sigma uncertainties. By
contrast, in asteroseismology, only low-l modes are visible and so higher-l
modes cannot be used to constrain the rotation profile of stars. Furthermore,
we usually only have one data set from which to measure the observed low-l
splitting. In such circumstances the inferred internal rotation rate of a main
sequence star could differ significantly from estimates of the surface rotation
rate, hence leading to spurious conclusions. Therefore, extreme care must be
taken when using only the splittings of low-l modes to draw conclusions about
the average internal rotation rate of a star.Comment: 10 pages, 7 figures, accepted for publication in MNRA
- âŠ