43 research outputs found

    Natural history of Arabidopsis thaliana and oomycete symbioses

    Get PDF
    Molecular ecology of plant–microbe interactions has immediate significance for filling a gap in knowledge between the laboratory discipline of molecular biology and the largely theoretical discipline of evolutionary ecology. Somewhere in between lies conservation biology, aimed at protection of habitats and the diversity of species housed within them. A seemingly insignificant wildflower called Arabidopsis thaliana has an important contribution to make in this endeavour. It has already transformed botanical research with deepening understanding of molecular processes within the species and across the Plant Kingdom; and has begun to revolutionize plant breeding by providing an invaluable catalogue of gene sequences that can be used to design the most precise molecular markers attainable for marker-assisted selection of valued traits. This review describes how A. thaliana and two of its natural biotrophic parasites could be seminal as a model for exploring the biogeography and molecular ecology of plant–microbe interactions, and specifically, for testing hypotheses proposed from the geographic mosaic theory of co-evolution

    An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus

    Get PDF
    The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility

    Global Analysis of Arabidopsis/Downy Mildew Interactions Reveals Prevalence of Incomplete Resistance and Rapid Evolution of Pathogen Recognition

    Get PDF
    Interactions between Arabidopsis thaliana and its native obligate oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) represent a model system to study evolution of natural variation in a host/pathogen interaction. Both Arabidopsis and Hpa genomes are sequenced and collections of different sub-species are available. We analyzed ∼400 interactions between different Arabidopsis accessions and five strains of Hpa. We examined the pathogen's overall ability to reproduce on a given host, and performed detailed cytological staining to assay for pathogen growth and hypersensitive cell death response in the host. We demonstrate that intermediate levels of resistance are prevalent among Arabidopsis populations and correlate strongly with host developmental stage. In addition to looking at plant responses to challenge by whole pathogen inoculations, we investigated the Arabidopsis resistance attributed to recognition of the individual Hpa effectors, ATR1 and ATR13. Our results suggest that recognition of these effectors is evolutionarily dynamic and does not form a single clade in overall Arabidopsis phylogeny for either effector. Furthermore, we show that the ultimate outcome of the interactions can be modified by the pathogen, despite a defined gene-for-gene resistance in the host. These data indicate that the outcome of disease and disease resistance depends on genome-for-genome interactions between the host and its pathogen, rather than single gene pairs as thought previously

    Development of Molecular Markers Tightly Linked to Pvr4 Gene in Pepper Using Next-Generation Sequencing

    Get PDF
    It is imperative to identify highly polymorphic and tightly linked markers of a known trait for molecular marker-assisted selection. Potyvirus resistance 4 (Pvr4) locus in pepper confers resistance to three pathotypes of potato virus Y and to pepper mottle virus. We describe the use of next-generation sequencing technology to generate molecular markers tightly linked to Pvr4. Initially, comparative genomics was carried out, and a syntenic region of tomato on chromosome ten was used to generate PCR-based markers and map Pvr4. Subsequently, the genomic sequence of pepper was used, and more than 5000 single-nucleotide variants (SNVs) were identified within the interval. In addition, we identified nucleotide binding site–leucine-rich repeat-type disease resistance genes within the interval. Several of these SNVs were converted to molecular markers desirable for large-scale molecular breeding programmes

    The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death

    Get PDF
    BACKGROUND: Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. PRINCIPLE FINDINGS: We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. CONCLUSIONS: This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.Davide Bulgarelli, Chiara Biselli, Nicholas C. Collins, Gabriella Consonni, Antonio M. Stanca, Paul Schulze-Lefert and Giampiero Val

    Computational Prediction and Molecular Characterization of an Oomycete Effector and the Cognate Arabidopsis Resistance Gene

    Get PDF
    Hyaloperonospora arabidopsidis (Hpa) is an obligate biotroph oomycete pathogen of the model plant Arabidopsis thaliana and contains a large set of effector proteins that are translocated to the host to exert virulence functions or trigger immune responses. These effectors are characterized by conserved amino-terminal translocation sequences and highly divergent carboxyl-terminal functional domains. The availability of the Hpa genome sequence allowed the computational prediction of effectors and the development of effector delivery systems enabled validation of the predicted effectors in Arabidopsis. In this study, we identified a novel effector ATR39-1 by computational methods, which was found to trigger a resistance response in the Arabidopsis ecotype Weiningen (Wei-0). The allelic variant of this effector, ATR39-2, is not recognized, and two amino acid residues were identified and shown to be critical for this loss of recognition. The resistance protein responsible for recognition of the ATR39-1 effector in Arabidopsis is RPP39 and was identified by map-based cloning. RPP39 is a member of the CC-NBS-LRR family of resistance proteins and requires the signaling gene NDR1 for full activity. Recognition of ATR39-1 in Wei-0 does not inhibit growth of Hpa strains expressing the effector, suggesting complex mechanisms of pathogen evasion of recognition, and is similar to what has been shown in several other cases of plant-oomycete interactions. Identification of this resistance gene/effector pair adds to our knowledge of plant resistance mechanisms and provides the basis for further functional analyses

    Competition between Phytophthora infestans Effectors Leads to Increased Aggressiveness on Plants Containing Broad-Spectrum Late Blight Resistance

    Get PDF
    BACKGROUND: The destructive plant disease potato late blight is caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary. This disease has remained particularly problematic despite intensive breeding efforts to integrate resistance into cultivated potato, largely because of the pathogen's ability to quickly evolve to overcome major resistance genes. The RB gene, identified in the wild potato species S. bulbocastanum, encodes a protein that confers broad-spectrum resistance to most P. infestans isolates through its recognition of highly conserved members of the corresponding pathogen effector family IPI-O. IpiO is a multigene family of effectors and while the majority of IPI-O proteins are recognized by RB to elicit host resistance, some variants exist that are able to elude detection (e.g. IPI-O4). METHODS AND FINDINGS: In the present study, analysis of ipiO variants among 40 different P. infestans isolates collected from Guatemala, Thailand, and the United States revealed a high degree of complexity within this gene family. Isolate aggressiveness was correlated with increased ipiO diversity and especially the presence of the ipiO4 variant. Furthermore, isolates expressing IPI-O4 overcame RB-mediated resistance in transgenic potato plants even when the resistance-eliciting IPI-O1 variant was present. In support of this finding, we observed that expression of IPI-O4 via Agrobacterium blocked recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death in Nicotiana benthamiana. CONCLUSIONS: In this study we definitively demonstrate and provide the first evidence that P. infestans can defeat an R protein through inhibition of recognition of the corresponding effector protein

    Computational models in plant-pathogen interactions: the case of Phytophthora infestans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phytophthora infestans </it>is a devastating oomycete pathogen of potato production worldwide. This review explores the use of computational models for studying the molecular interactions between <it>P. infestans </it>and one of its hosts, <it>Solanum tuberosum</it>.</p> <p>Modeling and conclusion</p> <p>Deterministic logistics models have been widely used to study pathogenicity mechanisms since the early 1950s, and have focused on processes at higher biological resolution levels. In recent years, owing to the availability of high throughput biological data and computational resources, interest in stochastic modeling of plant-pathogen interactions has grown. Stochastic models better reflect the behavior of biological systems. Most modern approaches to plant pathology modeling require molecular kinetics information. Unfortunately, this information is not available for many plant pathogens, including <it>P. infestans</it>. Boolean formalism has compensated for the lack of kinetics; this is especially the case where comparative genomics, protein-protein interactions and differential gene expression are the most common data resources.</p

    The Cyst Nematode SPRYSEC Protein RBP-1 Elicits Gpa2- and RanGAP2-Dependent Plant Cell Death

    Get PDF
    Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr) proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR), through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2), a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive

    Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phytophthora infestans </it>is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The <it>P. infestans </it>genome experienced a repeat-driven expansion relative to the genomes of <it>Phytophthora sojae </it>and <it>Phytophthora ramorum </it>and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation.</p> <p>Results</p> <p>We used <it>in silico </it>approaches to predict and describe the repertoire of <it>P. infestans </it>secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the <it>P. sojae </it>and <it>P. ramorum </it>genomes and (iii) is encoded by genes residing in gene sparse regions of <it>P. infestans </it>genome. Although including only ~3% <it>of P. infestans </it>genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced <it>in planta</it>. We highlight 19 plastic secretome genes induced <it>in planta </it>but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors.</p> <p>Conclusions</p> <p>This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.</p
    corecore