139 research outputs found
kinematic and neurophysiological models future applications in neurorehabilitation
This paper emphasizes the importance of developing kinematic and neurophysiological methods for evaluating motor and functional recovery in the field of neurorehabilitation. From a review of the literature, it is concluded that optoelectronic motion analysis and neurophysiological techniques, such as the study of nociceptive withdrawal reflex, might constitute useful applications for future research
Locomotor patterns in cerebellar ataxia
Several studies demonstrated how cerebellar ataxia (CA) affects gait, resulting in deficits in multi-joint coordination and stability. Nevertheless, how lesions of cerebellum influence the locomotor muscle pattern generation is still unclear. To better understand the effects of CA on locomotor output, here we investigated the idiosyncratic features of the spatiotemporal structure of leg muscle activity and impairments in the biomechanics of CA gait. To this end, we recorded the electromyographic (EMG) activity of 12 unilateral lower limb muscles and analyzed kinematic and kinetic parameters of 19 ataxic patients and 20 age-matched healthy subjects during overground walking. Neuromuscular control of gait in CA was characterized by a considerable widening of EMG bursts and significant temporal shifts in the center of activity due to overall enhanced muscle activation between late swing and mid-stance. Patients also demonstrated significant changes in the intersegmental coordination, an abnormal transient in the vertical ground reaction force and instability of limb loading at heel strike. The observed abnormalities in EMG patterns and foot loading correlated with the severity of pathology (clinical ataxia scale, ICARS) and the changes in the biomechanical output. The findings provide new insights into the physiological role of cerebellum in optimizing the duration of muscle activity bursts and the control of appropriate foot loading during locomotion
The sensor-based biomechanical risk assessment at the base of the need for revising of standards for human ergonomics
Due to the epochal changes introduced by “Industry 4.0”, it is getting harder to apply the varying approaches for biomechanical risk assessment of manual handling tasks used to prevent work-related musculoskeletal disorders (WMDs) considered within the International Standards for ergonomics. In fact, the innovative human–robot collaboration (HRC) systems are widening the number of work motor tasks that cannot be assessed. On the other hand, new sensor-based tools for biomechanical risk assessment could be used for both quantitative “direct instrumental evaluations” and “rating of standard methods”, allowing certain improvements over traditional methods. In this light, this Letter aims at detecting the need for revising the standards for human ergonomics and biomechanical risk assessment by analyzing the WMDs prevalence and incidence; additionally, the strengths and weaknesses of traditional methods listed within the International Standards for manual handling activities and the next challenges needed for their revision are considered. As a representative example, the discussion is referred to the lifting of heavy loads where the revision should include the use of sensor-based tools for biomechanical risk assessment during lifting performed with the use of exoskeletons, by more than one person (team lifting) and when the traditional methods cannot be applied. The wearability of sensing and feedback sensors in addition to human augmentation technologies allows for increasing workers’ awareness about possible risks and enhance the effectiveness and safety during the execution of in many manual handling activities
A New Contact Mat Wireless System for Estimating Vertical Jump Height
Abstract Among the different devices available for the assessment of the vertical jump height based on the flight time measurement, the contact mats are surely one of the simplest and portable systems and, for this reason, they are more widely used. This paper deals with the comparative evaluation of the performances of a new contact mat system with respect to a force platform. Some tests have been performed and the relative comparative results will be presented. The study shows a significant concurrent validity of Wi-JumpLe system for the flight and ground contact time measurements. In conclusion, the new contact mat structure together with the electronic measurement system is legitimate to assess vertical jump height and leg extensors muscle power
Gait Patterns in Patients with Hereditary Spastic Paraparesis
Spastic gait is a key feature in patients with hereditary spastic paraparesis, but the gait characterization and the relationship between the gait impairment and clinical characteristics have not been investigated
Progressive modular rebalancing system and visual cueing for gait rehabilitation in parkinson’s disease. A pilot, randomized, controlled trial with crossover
Introduction: The progressive modular rebalancing (PMR) system is a comprehensive rehabilitation approach derived from proprioceptive neuromuscular facilitation principles. PMR training encourages focus on trunk and proximal muscle function through direct perception, strength, and stretching exercises and emphasizes bi-articular muscle function in the improvement of gait performance. Sensory cueing, such as visual cues (VC), is one of the more established techniques for gait rehabilitation in PD. In this study, we propose PMR combined with VC for improving gait performance, balance, and trunk control during gait in patients with PD. Our assumption herein was that the effect of VC may add to improved motor performance induced by the PMR treatment. The primary aim of this study was to evaluate whether the PMR system plus VC was a more effective treatment option than standard physiotherapy in improving gait function in patients with PD. The secondary aim of the study was to evaluate the effect of this treatment on motor function severity. Design: Two-center, randomized, controlled, observer-blind, crossover study with a 4-month washout period. Participants: Forty individuals with idiopathic PD in Hoehn and Yahr stages 1–4. Intervention: Eight-week rehabilitation programs consisting of PMR plus VC (treatment A) and conventional physiotherapy (treatment B). Primary outcome measures: Spatiotemporal gait parameters, joint kinematics, and trunk kinematics. Secondary outcome measures: UPDRS-III scale scores. Results: The rehabilitation program was well-tolerated by individuals with PD and most participants showed improvements in gait variables and UPDRS-III scores with both treatments. However, patients who received PMR with VC showed better results in gait function with regard to gait performance (increased step length, gait speed, and joint kinematics), gait balance (increased step width and double support duration), and trunk control (increased trunk motion) than those receiving conventional physiotherapy. While crossover results revealed some differences in primary outcomes, only 37.5% of patients crossed over between the groups. As a result, our findings should be interpreted cautiously. Conclusions: The PMR plus VC program could be used to improve gait function and severity motor of motor deficit in individuals with PD
Prediction of responsiveness of gait variables to rehabilitation training in Parkinson's disease
Background: Gait disorders represent one of the most disabling features of Parkinson's disease, which may benefit from rehabilitation. No consistent evidence exists about which gait biomechanical factors can be modified by rehabilitation and which clinical characteristic can predict rehabilitation-induced improvements. Objectives: The aims of the study were as follows: (i) to recognize the gait parameters modifiable by a short-term rehabilitation program; (ii) to evaluate the gait parameters that can normalize after rehabilitation; and (iii) to identify clinical variables predicting improvements in gait function after rehabilitation. Methods: Thirty-six patients affected by idiopathic Parkinson's disease in Hoehn-Yahr stage 1-3 and 22 healthy controls were included in the study. Both clinical and instrumental (gait analysis) evaluations were performed before and after a 10-weeks rehabilitation treatment. Time-distance parameters, lower limb joint, and trunk kinematics were measured. Results: At baseline evaluation with matched speed, almost all gait parameters were significantly different between patients and healthy controls. After the 10-weeks rehabilitation, most gait parameters improved, and spatial asymmetry and trunk rotation normalized. Multiple linear regression of gender combined with Unified Parkinson's Disease Rating Scale-III predicted both ΔSpeed and ΔStep length of both sides; gender combined with Unified Parkinson's Disease Rating Scale-II predicted ΔCadence; age combined with Hoehn-Yahr score and disease duration predicted 1trunk rotation range of motion. Conclusions: Impaired gait parameters are susceptible to improvement by rehabilitation, and younger men with Parkinson's disease who are less severely affected and at early disease stage are more susceptible to improvements in gait function after a 10-weeks rehabilitation program
Neurophysiology of gait
Beyond the classic clinical description, recent studies have quantitatively evaluated gait and balance dysfunction in cerebellar ataxias by means of modern motion analysis systems. These systems have the aim of clearly and quantitatively describing the differences, with respect to healthy subjects, in kinematic, kinetic, and surface electromyography variables, establishing the basis for a rehabilitation strategy and assessing its efficacy. The main findings which characterize the gait pattern of cerebellar patients are: increased step width, reduced ankle joint range of motion with increased coactivation of the antagonist muscles, and increased stride-to-stride variability. Whereas the former is a compensatory strategy adopted by patients to keep the center of mass within the base of support, the latter indicates the inability of patients to maintain dynamic balance through a regular walking pattern and may reflect the primary deficit directly related to cerebellar dysfunction and the consequent lack of muscle coordination during walking. Moreover, during the course of the disease, with the progressive loss of walking autonomy, step length, and lower-limb joint range of motion are drastically reduced. As to the joint coordination defect, abnormal intralimb joint coordination during walking, in terms of both joint kinematics and interaction torques, has been reported in several studies. Furthermore, patients with cerebellar ataxia show a poor intersegmental coordination, with a chaotic coordinative behavior between trunk and hip, leading to increased upper-body oscillations that affect gait performance and stability, sustaining a vicious circle that transforms the upper body into a generator of perturbations. The use of motion analysis laboratories allows a deeper segmental and global characterization of walking impairment in these patients and can shed light on the nature of both the primary specific gait disorder and compensatory mechanisms. Such deeper understanding might reasonably represent a valid prerequisite for establishing better-targeted rehabilitation strategies
Critical issues and imminent challenges in the use of sEMG in return-to-work rehabilitation of patients affected by neurological disorders in the epoch of human–robot collaborative technologies
Patients affected by neurological pathologies with motor disorders when they are of working age have to cope with problems related to employability, difficulties in working, and premature work interruption. It has been demonstrated that suitable job accommodation plans play a beneficial role in the overall quality of life of pathological subjects. A well-designed return-to-work program should consider several recent innovations in the clinical and ergonomic fields. One of the instrument-based methods used to monitor the effectiveness of ergonomic interventions is surface electromyography (sEMG), a multi-channel, non-invasive, wireless, wearable tool, which allows in-depth analysis of motor coordination mechanisms. Although the scientific literature in this field is extensive, its use remains significantly underexploited and the state-of-the-art technology lags expectations. This is mainly attributable to technical and methodological (electrode-skin impedance, noise, electrode location, size, configuration and distance, presence of crosstalk signals, comfort issues, selection of appropriate sensor setup, sEMG amplitude normalization, definition of correct sEMG-related outcomes and normative data) and cultural limitations. The technical and methodological problems are being resolved or minimized also thanks to the possibility of using reference books and tutorials. Cultural limitations are identified in the traditional use of qualitative approaches at the expense of quantitative measurement-based monitoring methods to design and assess ergonomic interventions and train operators. To bridge the gap between the return-to-work rehabilitation and other disciplines, several teaching courses, accompanied by further electrodes and instrumentations development, should be designed at all Bachelor, Master and PhD of Science levels to enhance the best skills available among physiotherapists, occupational health and safety technicians and ergonomists
- …