12 research outputs found
HUMANISE: Human-Inspired Smart Management, towards a Healthy and Safe Industrial Collaborative Robotics
The workplace is evolving towards scenarios where humans are acquiring a more active and dynamic role alongside increasingly intelligent machines. Moreover, the active population is ageing and consequently emerging risks could appear due to health disorders of workers, which requires intelligent intervention both for production management and workers’ support. In this sense, the innovative and smart systems oriented towards monitoring and regulating workers’ well-being will become essential. This work presents HUMANISE, a novel proposal of an intelligent system for risk management, oriented to workers suffering from disease conditions. The developed support system is based on Computer Vision, Machine Learning and Intelligent Agents. Results: The system was applied to a two-arm Cobot scenario during a Learning from Demonstration task for collaborative parts transportation, where risk management is critical. In this environment with a worker suffering from a mental disorder, safety is successfully controlled by means of human/robot coordination, and risk levels are managed through the integration of human/robot behaviour models and worker’s models based on the workplace model of the World Health Organization. The results show a promising real-time support tool to coordinate and monitoring these scenarios by integrating workers’ health information towards a successful risk management strategy for safe industrial Cobot environments.This work is also based upon work from COST Actions CA18106 supported by COST (European Cooperation in Science and Technology) and the Basque Government grants, IT1489-22, ELKARTEK21/109 and EUSK22/17
Analysis of Fine Motor Skills in Essential Tremor: Combining Neuroimaging and Handwriting Biomarkers for Early Management
Essential tremor (ET) is a highly prevalent neurological disorder characterized by action-induced tremors involving the hand, voice, head, and/or face. Importantly, hand tremor is present in nearly all forms of ET, resulting in impaired fine motor skills and diminished quality of life. To advance early diagnostic approaches for ET, automated handwriting tasks and magnetic resonance imaging (MRI) offer an opportunity to develop early essential clinical biomarkers. In this study, we present a novel approach for the early clinical diagnosis and monitoring of ET based on integrating handwriting and neuroimaging analysis. We demonstrate how the analysis of fine motor skills, as measured by an automated Archimedes’ spiral task, is correlated with neuroimaging biomarkers for ET. Together, we present a novel modeling approach that can serve as a complementary and promising support tool for the clinical diagnosis of ET and a large range of tremors.This work was supported in part by the Universidad del País Vasco/Euskal Herriko Unibertsitatea, the University of Cambridge, PPG 17/51 and GIU 092/19, the Basque government (Saiotek SA-2010/00028, ELEKIN, Engineering and Society and Bioengineering Research Groups, GIC18/136, and ELKARTEK 18/99, 20/81), ‘‘Ministerio de Ciencia e Innovación’’ (SAF201677758R), FEDER funds, DomusVi Foundation (FP18/76), and the government of Gipuzkoa (HELENA, SABRINA, DG18/14-23, DG19/29, DG20/25 projects). This work is also based upon the work from COST Actions CA18106 and CA15225, supported by COST (European Cooperation in Science and Technology)
The Frontal Aslant Tract and Supplementary Motor Area Syndrome: Moving towards a Connectomic Initiation Axis.
Connectomics is the use of big data to map the brain's neural infrastructure; employing such technology to improve surgical planning may improve neuro-oncological outcomes. Supplementary motor area (SMA) syndrome is a well-known complication of medial frontal lobe surgery. The 'localizationist' view posits that damage to the posteromedial bank of the superior frontal gyrus (SFG) is the basis of SMA syndrome. However, surgical experience within the frontal lobe suggests that this is not entirely true. In a study on n = 45 patients undergoing frontal lobe glioma surgery, we sought to determine if a 'connectomic' or network-based approach can decrease the likelihood of SMA syndrome. The control group (n = 23) underwent surgery avoiding the posterior bank of the SFG while the treatment group (n = 22) underwent mapping of the SMA network and Frontal Aslant Tract (FAT) using network analysis and DTI tractography. Patient outcomes were assessed post operatively and in subsequent follow-ups. Fewer patients (8.3%) in the treatment group experienced transient SMA syndrome compared to the control group (47%) (p = 0.003). There was no statistically significant difference found between the occurrence of permanent SMA syndrome between control and treatment groups. We demonstrate how utilizing tractography and a network-based approach decreases the likelihood of transient SMA syndrome during medial frontal glioma surgery. We found that not transecting the FAT and the SMA system improved outcomes which may be important for functional outcomes and patient quality of life
Interventional neurorehabilitation for promoting functional recovery post-craniotomy: a proof-of-concept.
Funder: Alan Turing Institute; doi: http://dx.doi.org/10.13039/100012338Funder: Guarantors of Brain; doi: http://dx.doi.org/10.13039/501100000627The human brain is a highly plastic 'complex' network-it is highly resilient to damage and capable of self-reorganisation after a large perturbation. Clinically, neurological deficits secondary to iatrogenic injury have very few active treatments. New imaging and stimulation technologies, though, offer promising therapeutic avenues to accelerate post-operative recovery trajectories. In this study, we sought to establish the safety profile for 'interventional neurorehabilitation': connectome-based therapeutic brain stimulation to drive cortical reorganisation and promote functional recovery post-craniotomy. In n = 34 glioma patients who experienced post-operative motor or language deficits, we used connectomics to construct single-subject cortical networks. Based on their clinical and connectivity deficit, patients underwent network-specific transcranial magnetic stimulation (TMS) sessions daily over five consecutive days. Patients were then assessed for TMS-related side effects and improvements. 31/34 (91%) patients were successfully recruited and enrolled for TMS treatment within two weeks of glioma surgery. No seizures or serious complications occurred during TMS rehabilitation and 1-week post-stimulation. Transient headaches were reported in 4/31 patients but improved after a single session. No neurological worsening was observed while a clinically and statistically significant benefit was noted in 28/31 patients post-TMS. We present two clinical vignettes and a video demonstration of interventional neurorehabilitation. For the first time, we demonstrate the safety profile and ability to recruit, enroll, and complete TMS acutely post-craniotomy in a high seizure risk population. Given the lack of randomisation and controls in this study, prospective randomised sham-controlled stimulation trials are now warranted to establish the efficacy of interventional neurorehabilitation following craniotomy
Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy?
A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when “at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication.” The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist
Thalamic Deep Brain Stimulation for Spasmodic Dysphonia: A Phase I Prospective Randomized Double-Blind Crossover Trial.
BACKGROUND: Adductor spasmodic dysphonia (SD) is a dystonia of the vocal folds causing difficulty with speech. The current standard of care is repeated botulinum toxin injections to weaken the adductor muscles. We sought to ameliorate the underlying neurological cause of SD with a novel therapy-deep brain stimulation (DBS). OBJECTIVE: To assess the safety of DBS in SD through phase I trial, and to quantify the magnitude of any benefit. METHODS: Six patients had left ventral intermediate nucleus (Vim) thalamic DBS and were randomized to 3 mo blinded-DBS "on" or "off" followed by a crossover. Primary outcomes were quality of life and quality of voice during the blinded phase. Patients continued with open-DBS "on." Secondary outcomes were comparisons of pre- and 1-yr cognitive, mood, and quality of life. This trial was registered with ClinicalTrials.gov (NCT02558634). RESULTS: There were no complications. Every patient reported an improvement in quality of life (P = .07) and had an improvement in quality of their voice (P = .06) when their blinded DBS was "on" versus "off." The trend did not reach statistical significance with the small sample size. Secondary outcomes showed no difference in cognition, an improvement in mood, and quality of life at 1 yr. CONCLUSION: This phase I randomized controlled trial confirmed that DBS can be performed safely in patients with SD. Blinded DBS produced a strong trend toward improved quality of life and objective quality of voice despite the small sample size. The cerebellar circuit, not the pallidal circuit, appears to be crucial for motor control of the vocal folds
Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy?
A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when “at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication.” The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist
Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy?
Abstract: A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when “at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication.” The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist