6,576 research outputs found
Electron beam transfer line design for plasma driven Free Electron Lasers
Plasma driven particle accelerators represent the future of compact
accelerating machines and Free Electron Lasers are going to benefit from these
new technologies. One of the main issue of this new approach to FEL machines is
the design of the transfer line needed to match of the electron-beam with the
magnetic undulators. Despite the reduction of the chromaticity of plasma beams
is one of the main goals, the target of this line is to be effective even in
cases of beams with a considerable value of chromaticity. The method here
explained is based on the code GIOTTO [1] that works using a homemade genetic
algorithm and that is capable of finding optimal matching line layouts directly
using a full 3D tracking code.Comment: 9 Pages, 4 Figures. A related poster was presented at EAAC 201
Apparent superluminal advancement of a single photon far beyond its coherence length
We present experimental results relative to superluminal propagation based on
a single photon traversing an optical system, called 4f-system, which acts
singularly on the photon's spectral component phases. A single photon is
created by a CW laser light down{conversion process. The introduction of a
linear spectral phase function will lead to the shift of the photon peak far
beyond the coherence length of the photon itself (an apparent superluminal
propagation of the photon). Superluminal group velocity detection is done by
interferometric measurement of the temporal shifted photon with its correlated
untouched reference. The observed superluminal photon propagation complies with
causality. The operation of the optical system allows to enlighten the origin
of the apparent superluminal photon velocity. The experiment foresees a
superluminal effect with single photon wavepackets.Comment: 11 pages, 2 figure
Plasma boosted electron beams for driving Free Electron Lasers
In this paper, we report results of simulations, in the framework of both
EuPRAXIA \cite{Walk2017} and EuPRAXIA@SPARC\_LAB \cite{Ferr2017} projects,
aimed at delivering a high brightness electron bunch for driving a Free
Electron Laser (FEL) by employing a plasma post acceleration scheme. The
boosting plasma wave is driven by a tens of \SI{}{\tera\watt} class laser and
doubles the energy of an externally injected beam up to \GeV{1}. The injected
bunch is simulated starting from a photoinjector, matched to plasma, boosted
and finally matched to an undulator, where its ability to produce FEL radiation
is verified to yield O(\num{e11}) photons per shot at \nm{2.7}.Comment: 5 pages, 2 figure
Topological phase transition between the gap and the gapless superconductors
It is demonstrated that the known for a long time transition between the gap
and gapless superconducting states in the Abrikosov-Gor'kov theory of
superconducting alloy with paramagnetic impurities is of the Lifshitz type,
i.e. of the order phase transition. We prove that this phase
transition has a topological nature and is characterized by the corresponding
change of the topological invariant, namely the Euler characteristic. We study
the stability of such a transition with respect to the spatial fluctuations of
the magnetic impurities critical concentration and show that the
requirement for validity of its mean field description is unobtrusive: (here is the superconducting
coherence length) Finally, we show that, similarly to the Lifshitz point, the
order phase transition should be accompanied by the corresponding
singularities, for instance, the superconducting thermoelectric effect has a
giant peak exceeding the normal value of the Seebeck coefficient by the ratio
of the Fermi energy and the superconducting gap. The concept of the experiment
for the confirmation of order topological phase transition is
proposed.Comment: 7 pages with the supplemental material and 3 figure
Synchrotron radiation reveals the identity of the large felid from Monte Argentario (Early Pleistocene, Italy)
We describe here a partial skull with associated mandible of a large felid from Monte Argentario, Italy (Early Pleistocene; ~1.5 million years). Propagation x-ray phase-contrast synchrotron microtomography of the specimen, still partially embedded in the rock matrix, allows ascribing it reliably to Acinonyx pardinensis, one of the most intriguing extinct carnivorans of the Old World Plio-Pleistocene. The analysis of images and 3D models obtained through synchrotron microtomography – here applied for the first time on a Plio-Pleistocene carnivoran – reveals a mosaic of cheetah-like and Panthera-like features, with the latter justifying previous attributions of the fossil to the extinct Eurasian jaguar Panthera gombaszoegensis. Similarly, we reassign to A. pardinensis some other Italian materials previously referred to P. gombaszoegensis (sites of Pietrafitta and Ellera di Corciano). The recognition of Panthera-like characters in A. pardinensis leads to reconsidering the ecological role of this species, whose hunting strategy was likely to be different from those of the living cheetah. Furthermore, we hypothesise that the high intraspecific variation in body size in A. pardinensis can be the result of sexual dimorphism, as observed today in all large-sized felids
EuPRAXIA@SPARC_LAB: the high-brightness RF photo-injector layout proposal
At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness
RF injector and a plasma-based accelerator will drive a new multi-disciplinary
user-facility. The facility, that is currently under study at INFN-LNF
Laboratories (Frascati, Italy) in synergy with the EuPRAXIA collaboration, will
operate the plasma-based accelerator in the external injection configuration.
Since in this configuration the stability and reproducibility of the
acceleration process in the plasma stage is strongly influenced by the
RF-generated electron beam, the main challenge for the RF injector design is
related to generating and handling high quality electron beams. In the last
decades of R&D activity, the crucial role of high-brightness RF photo-injectors
in the fields of radiation generation and advanced acceleration schemes has
been largely established, making them effective candidates to drive
plasma-based accelerators as pilots for user facilities. An RF injector
consisting in a high-brightness S-band photo-injector followed by an advanced
X-band linac has been proposed for the EuPRAXIA@SPARC_LAB project. The electron
beam dynamics in the photo-injector has been explored by means of simulations,
resulting in high-brightness, ultra-short bunches with up to 3 kA peak current
at the entrance of the advanced X-band linac booster. The EuPRAXIA@SPARC_LAB
high-brightness photo-injector is described here together with performance
optimisation and sensitivity studies aiming to actual check the robustness and
reliability of the desired working point.Comment: 5 pages,5 figures, EAAC201
- …