25 research outputs found

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells

    Mimicking the tumor microenvironment of chronic lymphocytic leukemia in vitro critically depends on the type of B cell receptor stimulation

    No full text
    Background: The B-cell receptor (BCR) has a key role in the cross-talk between chronic lymphocytic leukaemia (CLL) cells and the tissue microenvironment, which favours disease progression by promoting proliferation and drug resistance. In vitro studies on downstream signalling and functional effects of CLL BCR ligation often report contradictory results, in part owing to the lack of a standardised stimulation protocol. Our aim was to define a biologically relevant and robust in vitro stimulation method with regard to cellular phenotypic and transcriptional responses. Methods: We evaluated mRNA (FOS, MYC, LPL) and protein (CD54, CD19, CD62L, CD184) expression of genes modulated by BCR triggering in immunoglobulin heavy-chain variable region genes (IGHV)-mutated and -unmutated CLL cells, after stimulation using soluble or immobilised anti-IgM antibodies from different suppliers. Results: The effect of BCR stimulation on gene and protein expression was comparable in all CLL patients, irrespective of IGHV mutation status. However, immobilised anti-IgM stimulation elicited clear and robust changes in gene and protein expression, whereas the response to soluble anti-IgM was far less obvious. Conclusions: These data indicate that the method of BCR stimulation is of major importance regarding responsiveness of CLL cells in the context of the tumour microenvironment, whereas genetic differences in the BCR pathway are less critical

    B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia

    No full text
    B cell chronic lymphocytic leukemia (B-CLL) is a clonal overgrowth of CD5(+) B lymphocytes. In this disease, the B cell antigen receptor (BCR) is intimately linked to disease severity, because patients with BCRs, comprised of unmutated V(H) genes, follow a much more aggressive course. This and related observations suggest that B-CLL derives from a B cell subset comprised of restricted BCR structural diversity and that antigen-selection and drive are major factors promoting the disease. Nevertheless, the initiating event(s) that lead to the development of B-CLL are still unclear, in part because of the lack of an animal model that spontaneously evolves the molecular abnormalities that occur in the human disease. Because overexpression of the TCL1 gene in murine B cells leads to a CD5(+) B cell lymphoproliferative disorder with many of the features of human B-CLL, we studied leukemias emerging in these mice to examine the extent to which their BCRs resemble those in B-CLL. Our data indicate that the immunoglobulin heavy and light chain rearrangements in TCL1 mice display minimal levels of somatic mutations and exhibit several molecular features found in the human disease. Like human B-CLL, TCL1 leukemic rearrangements from different mice can be very similar structurally and closely resemble autoantibodies and antibodies reactive with microbial antigens. Antigen-binding analyses confirm that selected TCL1 clones react with glycerophospholipid, lipoprotein, and polysaccharides that can be autoantigens and be expressed by microbes. This (auto)antigen-driven mouse model reliably captures the BCR characteristics of aggressive, treatment-resistant human B-CLL

    Highly purified CD38+ and CD38- sub-clones derived from the same chronic lymphocytic leukemia patient have distinct gene expression signatures despite their monoclonal origin.

    No full text
    CD38 expression is an important prognostic marker in chronic lymphocytic leukemia (CLL) with high levels of CD38 associated with shorter overall survival. In this study, we used gene expression profiling and protein analysis of highly purified cell-sorted CD38(+) and CD38(-) chronic lymphocytic leukemia cells to elucidate a molecular basis for the association between CD38 expression and inferior clinical outcome. Paired CD38(+) and CD38(-) CLL cells derived from the same patient were shown to be monoclonal by V(H) gene sequencing but despite this, CD38(+) CLL cells possessed a distinct gene expression profile when compared with their CD38(-) sub-clones. Importantly, CD38(+) CLL cells relatively over expressed vascular endothelial growth factor (VEGF) and appeared to preferentially utilize an internal autocrine VEGF survival loop. Elevated VEGF expression was associated with increased expression of the anti-apoptotic protein Mcl-1. Inhibition of VEGF receptor signaling also resulted in a reduction in cell viability. In contrast, exogenous VEGF caused a significant increase in CD38(-) CLL cell viability and a marked induction of Mcl-1; both effects were less obvious in CD38(+) CLL cells. Taken together, our data provide a biological rationale for the poor prognosis of CD38(+) CLL and indicate that both VEGF and Mcl-1 may prove to be useful therapeutic targets

    The JAK3-selective inhibitor PF-956980 reverses the resistance to cytotoxic agents induced by interleukin-4 treatment of chronic lymphocytic leukemia cells: potential for reversal of cytoprotection by the microenvironment

    No full text
    Extensive evidence suggests that the malignant cells of chronic lymphocytic leukemia (CLL) patients are in close contact with activated T lymphocytes, which secrete a range of cytoprotective cytokines including interleukin-4 (IL-4). IL-4 induced the rapid phosphorylation and activation of the signal transducer and activator of transcription 6 transcription factor in CLL cells in vitro. Longer incubation with IL-4 resulted in up-regulation of the antiapoptotic proteins, Mcl-1 and Bcl-X(L). All of these events were blocked by the JAK3-selective inhibitor, PF-956980. A dye reduction cytotoxicity assay showed that IL-4 induced resistance to the cytotoxic drugs fludarabine and chlorambucil and to the novel p53-elevating agent nutlin 3. IL-4-induced drug resistance was reversed by PF-956980. These conclusions were confirmed by independent assays for apoptosis induction (annexin V binding, cleavage of poly[ADP-ribose] polymerase, and morphologic analysis). Coculture with bone marrow stromal cells in the presence of supernatants derived from activated T-lymphocyte cultures also protected CLL cells from apoptosis induction by chlorambucil. Protection by these combined signals was reversed by PF-956980. The data here provide a preclinical rationale for the possible therapeutic use of PF-956980 in conjunction with conventional cytotoxic drugs to achieve more extensive killing of CLL cells by overcoming antiapoptotic signaling by the microenvironment
    corecore