5 research outputs found

    Revealing Dissociable Attention Biases in Chronic Smokers Through an Individual-Differences Approach

    Get PDF
    Addiction is accompanied by attentional biases (AB), wherein drug-related cues grab attention independently of their perceptual salience. AB have emerged in different flavours depending on the experimental approach, and their clinical relevance is still debated. In chronic smokers we sought evidence for dissociable attention abnormalities that may play distinct roles in the clinical manifestations of the disorder. Fifty smokers performed a modified visual probe-task measuring two forms of AB and their temporal dynamics, and data on their personality traits and smoking history/ status were collected. Two fully dissociable AB effects were found: A Global effect, reflecting the overall impact of smoke cues on attention, and a Location-specific effect, indexing the impact of smoke cues on visuospatial orienting. Importantly, the two effects could be neatly separated from one another as they: (i) unfolded with dissimilar temporal dynamics, (ii) were accounted for by different sets of predictors associated with personality traits and smoking history and (iii) were not correlated with one another. Importantly, the relevance of each of these two components in the single individual depends on a complex blend of personality traits and smoking habits, a result that future efforts addressing the clinical relevance of addiction-related AB should take into careful consideration.This study was supported by funding provided by the University of Verona to CDL, CC and L

    Dissociable Effects of Reward on Attentional Learning: From Passive Associations to Active Monitoring

    Get PDF
    Visual selective attention (VSA) is the cognitive function that regulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior, facilitating analysis of currently relevant information while suppressing the less relevant input. Recent findings indicate that the deployment of VSA is shaped according to past outcomes. Targets whose selection has led to rewarding outcomes become relatively easier to select in the future, and distracters that have been ignored with higher gains are more easily discarded. Although outcomes (monetary rewards) were completely predetermined in our prior studies, participants were told that higher rewards would follow more efficient responses. In a new experiment we have eliminated the illusory link between performance and outcomes by informing subjects that rewards were randomly assigned. This trivial yet crucial manipulation led to strikingly different results. Items that were associated more frequently with higher gains became more difficult to ignore, regardless of the role (target or distracter) they played when differential rewards were delivered. Therefore, VSA is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored) and the more-or-less rewarding events that accompany them

    Rewards teach visual selective attention.

    No full text
    Visual selective attention is the brain function that modulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior. Enhanced analysis of currently relevant or otherwise salient information is often accompanied by suppressed processing of the less relevant or salient input. Recent findings indicate that rewards exert a powerful influence on the deployment of visual selective attention. Such influence takes different forms depending on the specific protocol adopted in the given study. In some cases, the prospect of earning a larger reward in relation to a specific stimulus or location biases attention accordingly in order to maximize overall gain. This is mediated by an effect of reward acting as a type of incentive motivation for the strategic control of attention. In contrast, reward delivery can directly alter the processing of specific stimuli by increasing their attentional priority, and this can be measured even when rewards are no longer involved, reflecting a form of reward-mediated attentional learning. As a further development, recent work demonstrates that rewards can affect attentional learning in dissociable ways depending on whether rewards are perceived as feedback on performance or instead are registered as random-like events occurring during task performance. Specifically, it appears that visual selective attention is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored) and the more-or-less rewarding events that accompany them. Overall this emerging literature demonstrates unequivocally that rewards \u201cteach\u201d visual selective attention so that processing resources will be allocated to objects, features and locations which are likely to optimize the organism\u2019s interaction with the surrounding environment and maximize positive outcome
    corecore