1,248 research outputs found
First images on the sky from a hyper telescope
We show star images obtained with a miniature ``densified pupil imaging
interferometer'' also called a hyper-telescope. The formation of such images
violates a ``golden rule of imaging interferometers'' which appeared to forbid
the use of interferometric arrangements differing from a Fizeau interferometer.
These produce useless images when the sub-apertures spacing is much wider than
their size, owing to diffraction through the sub-apertures. The hyper-telescope
arrangement solves these problems opening the way towards multi-kilometer
imaging arrays in space. We experimentally obtain an intensity gain of 24 +- 3X
when a densified-pupil interferometer is compared to an equivalent Fizeau-type
interferometer and show images of the double star alpha Gem. The initial
results presented confirm the possibility of directly obtaining high resolution
and high dynamic range images in the recombined focal plane of a large
interferometer if enough elements are used.Comment: 6 pages, LaTeX, standard A&A macros + BibTeX macros. Accepted for
publication in Astronomy and Astrophysics Supplement
Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs
Diabetes Mellitus (DM) is a multi-factorial chronic health condition that affects a large part of population and according to the World Health Organization (WHO) the number of adults living with diabetes is expected to increase. Since type 2 diabetes mellitus (T2DM) is suffered by the majority of diabetic patients (around 90-95%) and often the mono-target therapy fails in managing blood glucose levels and the other comorbidities, this review focuses on the potential drugs acting on multi-targets involved in the treatment of this type of diabetes. In particular, the review considers the main systems directly involved in T2DM or involved in diabetes comorbidities. Agonists acting on incretin, glucagon systems, as well as on peroxisome proliferation activated receptors are considered. Inhibitors which target either aldose reductase and tyrosine phosphatase 1B or sodium glucose transporters 1 and 2 are taken into account. Moreover, with a view at the multi-target approaches for T2DM some phytocomplexes are also discussed
Scale dependence of the hydraulic properties of a fractured aquifer estimated using transfer functions
We present an investigation of the scale dependence of hydraulic parameters in fractured media based on the concept of transfer functions (TF). TF methods provide an inexpensive way to perform aquifer parameter estimation, as they relate the fluctuations of an observation time series (hydraulic head fluctuations) to an input function (aquifer recharge) in frequency domain. Fractured media are specially sensitive to this approach as hydraulic parameters are strongly scale-dependent, involving nonstationary statistical distributions. Our study is based on an extensive data set, involving up to 130 measurement points with periodic head measurements that in some cases extend for more than 30 years. For each point, we use a single-porosity and dual-continuum TF formulation to obtain a distribution of transmissivities and storativities in both mobile and immobile domains. Single-porosity TF estimates are compared with data obtained from the interpretation of over 60 hydraulic tests (slug and pumping tests). Results show that the TF is able to estimate the scale dependence of the hydraulic parameters, and it is consistent with the behavior of estimates from traditional hydraulic tests. In addition, the TF approach seems to provide an estimation of the system variance and the extension of the ergodic behavior of the aquifer (estimated in approximately 500 m in the analyzed aquifer). The scale dependence of transmissivity seems to be independent from the adopted formulation (single or dual-continuum), while storativity is more sensitive to the presence of multiple continua
First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion
Young and close multiple systems are unique laboratories to probe the initial
dynamical interactions between forming stellar systems and their dust and gas
environment. Their study is a key building block to understanding the high
frequency of main-sequence multiple systems. However, the number of detected
spectroscopic young multiple systems that allow dynamical studies is limited.
GW Orionis is one such system. It is one of the brightest young T Tauri stars
and is surrounded by a massive disk. Our goal is to probe the GW Orionis
multiplicity at angular scales at which we can spatially resolve the orbit. We
used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with
an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared
visibilities and closure phases with a good UV coverage we carry out the first
image reconstruction of GW Ori from infrared long-baseline interferometry. We
obtain the first infrared image of a T Tauri multiple system with astronomical
unit resolution. We show that GW Orionis is a triple system, resolve for the
first time the previously known inner pair (separation 1.4 AU) and
reveal a new more distant component (GW Ori C) with a projected separation of
8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1)
H-band flux ratio of the inner components suggests that either GW Ori B is
undergoing a preferential accretion event that increases its disk luminosity or
that the estimate of the masses has to be revisited in favour of a more equal
mass-ratio system that is seen at lower inclination. Accretion disk models of
GW Ori will need to be completely reconsidered because of this outer companion
C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201
Environmental performance of chocolate produced in ghana using life cycle assessment
Ghana is an important cocoa producer and exporter and this production is of high economic importance. Increasing interest in the sustainable productions of cocoa/chocolate necessitated the need to assess the environmental impacts associated with the production of different chocolate variants (extra dark (EDC), dark (DC), milk (MC) and flavoured milk (FMC) in Ghana, including the identification of environmental hotspots for improvement. The life cycle assessment tool was used following the CML_IA and CED impact assessment methods. EDC had the lowest scores for most of the impact categories while FMC was most impactful. For Global Warming Potential (GWP), EDC and FMC were estimated to be 1.61 kg CO2 eq. and 4.21 kg CO2 eq., respectively. CED ranged from 1.44 × 102 to 1.50 × 102 MJ-eq. Chocolate manufacturing phase was generally more impactful than cocoa cultivation due to high emissions from milk and sugar production. The impact scores for 100 g packaged chocolate bar were the lowest in comparison to 300 g chocolate pouches and 12.5 g packaged chocolate strips. GWP for 100 g and 12.5 g were 0.20 kg CO2 eq. and 0.39 kg CO2 eq., respectively. Comparing different destination points for the manufactured chocolate, impact scores for the international destination were similar to those recorded for local destinations. Improvement options are suggested for all phases to ensure more sustainable chocolate production and distribu-tion
Interaction of basin-scale topography- and salinity-driven groundwater flow in synthetic and real hydrogeological systems
Salinization of groundwater has endangered e.g. drinking water supply, agricultural cultivation, groundwater-dependent ecosystems, geothermal energy supply, thermal and hydrocarbon well production to a rising degree. In order to investigate the problem of coupled topography- and salinity-driven groundwater flow on a basin-scale, a systematic simulation set has been carried out in a synthetic numerical model. Detailed sensitivity analysis was completed to reveal the effect of the salinity, permeability, permeability heterogeneity and anisotropy, mechanical dispersivity and water table head on the salt concentration field and the flow pattern. It was established that a saline dome with slow inner convection formed beneath the discharge zone in the base model due to the topography-driven regional fresh groundwater flow. An increase in the salinity or the anisotropy or decrease in the water table variation weakens the role of the forced convection driven by the topography, thus facilitating the formation of a saline, dense, sluggish layer in the deepest zone of the basin. In the studied parameter range, the variation in permeability and dispersivity affects the shape of the saltwater dome to less degree. However, the decrease in permeability and/or the increase in dispersivity advantage the homogenization of the salt concentration within the saline zone and strengthen the coupling between the saltwater and freshwater zone by growing the relative role of diffusion and transverse dispersion, respectively. The interaction of the topography-driven forced and salinity driven free convection was investigated along a real hydrological section in Hungary. Simulation elucidated the fresh, brackish and saline character of the water sampled the different hydrostratigraphic units by revealing the connection between the topography-driven upper siliciclastic aquifer and the lower confined karstic aquifer through faults in high-salinity clayey aquitard. The current study improves the understanding of the interaction between the topography-driven forced and the salinity-driven free convection, i.e. topohaline convection, especially in basin-scale groundwater flow systems
Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry
We present the first high angular resolution observation of the B[e]
star/X-ray transient object CI Cam, performed with the two-telescope Infrared
Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T)
and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases
were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was
observed in the near-infrared H and K spectral bands, wavelengths well suited
to measure the size and study the geometry of the hot dust surrounding CI Cam.
The analysis of the visibility data over an 8 year period from soon after the
1998 outburst to 2006 shows that the dust visibility has not changed over the
years. The visibility data shows that CI Cam is elongated which confirms the
disc-shape of the circumstellar environment and totally rules out the
hypothesis of a spherical dust shell. Closure phase measurements show direct
evidence of asymmetries in the circumstellar environment of CI Cam and we
conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at
an angle. The near-infrared dust emission appears as an elliptical skewed
Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39
+/- 0.03 and a position angle theta = 35 +/- 2 deg.Comment: 9 pages, 5 figures, accepted MNRA
Life cycle assessment of protected strawberry productions in central Italy
Agricultural activities in Europe cover half of the total area of the continent and are simultaneously a cause of environmental impact and victims of the same impact. Horticultural or fruit crops are considered highly intensive and often employ many crop inputs such as fertilizers, pesticides, and various materials. Strawberry falls into this group, and it has grown in acreage and production more than others globally. The aim of this study is to compare the environmental impact of two strawberry cultivation systems in central Italy, a mulched soil tunnel and a soilless tunnel system. The method used to assess the impact is LCA, widely applied in agriculture and supported by international standards. The data used are mainly primary, related to 2018, and representative of the cultivation systems of central Italy. For impact assessment, the method selected was the CML_IA baseline version. From the results obtained, the two systems show a similar impact per kg of strawberries produced (e.g., for global warming: 0.785 kg CO2 eq for soilless, 0.778 kg CO2 eq for mulched soil tunnel). Reduced differences can be observed for the use of crop inputs (greater for the tunnel) and the use of materials and technology (greater for soilless). The mitigation measures considered concern the replacement of the packaging (excluding plastic) and the growing medium of the soilless using perlite and compost from insect breeding
Combining molecular dynamics and docking simulations to develop targeted protocols for performing optimized virtual screening campaigns on the HTRPM8 channel
Background: There is an increasing interest in TRPM8 ligands of medicinal interest, the rational design of which can be nowadays supported by structure-based in silico studies based on the recently resolved TRPM8 structures. Methods: The study involves the generation of a reliable hTRPM8 homology model, the reliability of which was assessed by a 1.0 \u3bcs MD simulation which was also used to generate multiple receptor conformations for the following structure-based virtual screening (VS) campaigns; docking simulations utilized different programs and involved all monomers of the selected frames; the so computed docking scores were combined by consensus approaches based on the EFO algorithm. Results: The obtained models revealed very satisfactory performances; LiGen\u2122 provided the best results among the tested docking programs; the combination of docking results from the four monomers elicited a markedly beneficial effect on the computed consensus models. Conclusions: The generated hTRPM8 model appears to be amenable for successful structure-based VS studies; cross-talk modulating effects between interacting monomers on the binding sites can be accounted for by combining docking simulations as performed on all the monomers; this strategy can have general applicability for docking simulations involving quaternary protein structures with multiple identical binding pockets
- …