439 research outputs found

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    Alveolar rhabdomyosarcoma of the neck in a two-months-old baby: diagnostic challenges

    Get PDF
    Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. The rarity of its occurrence in infant poses a great difficulty in terms of diagnosis and management. Here, we report an aggressive case of alveolar rhabdomyosarcoma in an infant who presented with neck swelling and neurological complications. The Magnetic Resonance Imaging (MRI) revealed a soft tissue swelling of the neck with intraspinal extension and spinal cord compression, raising the possibility of a neurogenic or malignant nerve sheath tumour. Histopathological examination revealed a primitive, small round cell tumour with no rhabdoid differentiation. The clinical presentation, neurological symptoms, tumor location and the histopathologic features were highly suggestive of neuroblastoma. However, the tumour cells were positive for desmin with focal and weak nuclear positivity for myogenin and MyoD1; immunoexpressions which were in favour of rhabdomyosarcoma. Fluorescent in situ hybridization (FISH) confirmed the presence of a translocation t(2;13)(q35;q14), supporting the diagnosis of alveolar rhabdomyosarcoma. Despite chemotherapy, patient succumbed to death after two months due to septic shock. Rhabdomyosarcoma is highly aggressive mesenchymal neoplasm which may present with diagnostic difficulty. This case highlights the importance of molecular studies in making an accurate diagnosis so that appropriate chemotherapy may be instituted

    MRI-guided adaptive radiotherapy for prostate cancer: When do we need to account for intra-fraction motion?

    Get PDF
    A shift of the daily plan can mitigate target position changes that occur between daily MR acquisition and treatment for MR-linac radiotherapy, but increases the session time. We demonstrated that our workflow strategy and decision-making process, to determine whether a subsequent shift is necessary, is appropriate

    Design and execution of a verification, validation, and uncertainty quantification plan for a numerical model of left ventricular flow after LVAD implantation

    Get PDF
    BACKGROUND: Left ventricular assist devices (LVADs) are implantable pumps that act as a life support therapy for patients with severe heart failure. Despite improving the survival rate, LVAD therapy can carry major complications. Particularly, the flow distortion introduced by the LVAD in the left ventricle (LV) may induce thrombus formation. While previous works have used numerical models to study the impact of multiple variables in the intra-LV stagnation regions, a comprehensive validation analysis has never been executed. The main goal of this work is to present a model of the LV-LVAD system and to design and follow a verification, validation and uncertainty quantification (VVUQ) plan based on the ASME V&V40 and V&V20 standards to ensure credible predictions. METHODS: The experiment used to validate the simulation is the SDSU cardiac simulator, a bench mock-up of the cardiovascular system that allows mimicking multiple operation conditions for the heart-LVAD system. The numerical model is based on Alya, the BSC’s in-house platform for numerical modelling. Alya solves the Navier-Stokes equation with an Arbitrary Lagrangian-Eulerian (ALE) formulation in a deformable ventricle and includes pressure-driven valves, a 0D Windkessel model for the arterial output and a LVAD boundary condition modeled through a dynamic pressure-flow performance curve. The designed VVUQ plan involves: (a) a risk analysis and the associated credibility goals; (b) a verification stage to ensure correctness in the numerical solution procedure; (c) a sensitivity analysis to quantify the impact of the inputs on the four quantities of interest (QoIs) (average aortic root flow , maximum aortic root flow , average LVAD flow , and maximum LVAD flow ); (d) an uncertainty quantification using six validation experiments that include extreme operating conditions. RESULTS: Numerical code verification tests ensured correctness of the solution procedure and numerical calculation verification showed a grid convergence index (GCI)95% <3.3%. The total Sobol indices obtained during the sensitivity analysis demonstrated that the ejection fraction, the heart rate, and the pump performance curve coefficients are the most impactful inputs for the analysed QoIs. The Minkowski norm is used as validation metric for the uncertainty quantification. It shows that the midpoint cases have more accurate results when compared to the extreme cases. The total computational cost of the simulations was above 100 [core-years] executed in around three weeks time span in Marenostrum IV supercomputer. Conclusions This work details a novel numerical model for the LV-LVAD system, that is supported by the design and execution of a VVUQ plan created following recognised international standards. We present a methodology demonstrating that stringent VVUQ according to ASME standards is feasible but computationally expensive.This project was funded in part by the FDA Critical Path Initiative and by an appointment to the Research Participation Program at the Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, administered by the Oak Ridge Institute for Science, and Education through an interagency agreement between the U.S. Department of Energy and FDA to RAG. MV and AS acknowledge the funding from the project CompBioMed2 (H2020-EU.1.4.1.3. Grant number: 823712), SilicoFCM (H2020-EU.3.1.5. Grant number: 777204), and NEOTEC 2019 - "Generador de Corazones Virtuales" (“Ministerio de Economía y competititvidad”, EXP - 00123159 / SNEO-20191113). AS salary is partially funded by the “Ministerio de Economía y competititvidad” under the Torres Quevedo Program (grant number: PTQ2019-010528). CB salary is partially funded by the Torres Quevedo Program (grant number: PTQ2018-010290). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer ReviewedPostprint (published version

    Metabolomic Shifts Associated with Heat Stress in Coral Holobionts

    Get PDF
    Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia (Exaiptasia pallida), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral

    Chaste: a test-driven approach to software development for biological modelling

    Get PDF
    Chaste (‘Cancer, heart and soft-tissue environment’) is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence.\ud \ud Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling

    An integrative computational model for intestinal tissue renewal

    Get PDF
    Objectives\ud \ud The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal process, to investigate how its dysfunction can lead to loss of homeostasis and neoplasia, and to identify potential therapeutic interventions. Here we propose a new multiscale model for crypt dynamics that links phenomena occurring at the subcellular, cellular and tissue levels of organisation.\ud \ud Methods\ud \ud At the subcellular level, deterministic models characterise molecular networks, such as cell-cycle control and Wnt signalling. The output of these models determines the behaviour of each epithelial cell in response to intra-, inter- and extracellular cues. The modular nature of the model enables us to easily modify individual assumptions and analyse their effects on the system as a whole.\ud \ud Results\ud \ud We perform virtual microdissection and labelling-index experiments, evaluate the impact of various model extensions, obtain new insight into clonal expansion in the crypt, and compare our predictions with recent mitochondrial DNA mutation data. \ud \ud Conclusions\ud \ud We demonstrate that relaxing the assumption that stem-cell positions are fixed enables clonal expansion and niche succession to occur. We also predict that the presence of extracellular factors near the base of the crypt alone suffices to explain the observed spatial variation in nuclear beta-catenin levels along the crypt axis

    Effect of Heart Structure on Ventricular Fibrillation in the Rabbit: A Simulation Study

    Get PDF
    Ventricular fibrillation (VF) is a lethal condition that affects millions worldwide. The mechanism underlying VF is unstable reentrant electrical waves rotating around lines called filaments. These complex spatio-temporal patterns can be studied using both experimental and numerical methods. Computer simulations provide unique insights including high resolution dynamics throughout the heart and systematic control of quantities such as fiber orientation and cellular kinetics that are not feasible experimentally. Here we study filament dynamics using two bi-ventricular 3-D high-resolution rabbit heart geometries, one with detailed fine structure and another without fine structure. We studied filament dynamics using anisotropic and isotropic conductivities, and with four cellular action potential models with different recovery kinetics. Spiral wave dynamics observed in isotropic two-dimensional sheets were not predictive of the behavior in the whole heart. In 2-D the four cell models exhibited stable reentry, meandering spiral waves, and spiral-wave breakup. In the whole heart with fine structure, all simulation results exhibited complex dynamics reminiscent of fibrillation observed experimentally. In the whole heart without fine structure, anisotropy acted to destabilize filament dynamics although the number of filaments was reduced compared to the heart with structure. In addition, in isotropic hearts without structure the two cell models that exhibited meandering spiral waves in 2-D, stabilized into figure-of-eight surface patterns. We also studied the sensitivity of filament dynamics to computer system configuration and initial conditions. After large simulation times, different macroscopic results sometimes occurred across different system configurations, likely due to a lack of bitwise reproducibility. The study conclusions were insensitive to initial condition perturbations, however, the exact number of filaments over time and their trends were altered by these changes. In summary, we present the following new results. First, we provide a new cell model that resembles the surface patterns of VF in the rabbit heart both qualitatively and quantitatively. Second, filament dynamics in the whole heart cannot be predicted from spiral wave dynamics in 2-D and we identified anisotropy as one destabilizing factor. Third, the exact dynamics of filaments are sensitive to a variety of factors, so we suggest caution in their interpretation and their quantitative analyses
    • …
    corecore