357 research outputs found

    Spin textures in condensates with large dipole moments

    Get PDF
    We have solved numerically the ground states of a Bose-Einstein condensate in the presence of dipolar interparticle forces using a semiclassical approach. Our motivation is to model, in particular, the spontaneous spin textures emerging in quantum gases with large dipole moments, such as 52Cr or Dy condensates, or ultracold gases consisting of polar molecules. For a pancake-shaped harmonic (optical) potential, we present the ground state phase diagram spanned by the strength of the nonlinear coupling and dipolar interactions. In an elongated harmonic potential, we observe a novel helical spin texture. The textures calculated according to the semiclassical model in the absence of external polarizing fields are predominantly analogous to previously reported results for a ferromagnetic F = 1 spinor Bose-Einstein condensate, suggesting that the spin textures arising from the dipolar forces are largely independent of the value of the quantum number F or the origin of the dipolar interactions.Comment: 9 pages, 6 figure

    Renormalisation of quark bilinears with Nf=2 Wilson fermions and tree-level improved gauge action

    Get PDF
    We present results for the renormalisation constants of bilinear quark operators, using the Nf=2 twisted mass Wilson action at maximal twist (which guarantees automatic O(a) improvement) and the tree-level Symanzik improved gauge action. The scale-independent renormalisation constants are computed with a new method, which makes use of both standard twisted mass and Osterwalder-Seiler fermions. Moreover, the results from an RI-MOM calculation are presented for both scale independent and scale dependent renormalisation constants.Comment: 7 pages, talk at The XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensbur

    Stable Fractional Vortices in the Cyclic States of Bose-Einstein Condensates

    Full text link
    We propose methods to create fractional vortices in the cyclic state of an F = 2 spinor Bose-Einstein condensate by manipulating its internal spin structure using pulsed microwave and laser fields. The stability of such vortices is studied as a function of the rotation frequency of the confining harmonic trap both in pancake and cigar shaped condensates. We find a range of parameters for which the so-called 1/3-vortex state is energetically favorable. Such fractional vortices could be created in condensates of 87Rb atoms using current experimental techniques facilitating probing of topological defects with non-Abelian statistics.Comment: 5 pages, 2 figure

    Angular momentum exchange between coherent light and matter fields

    Full text link
    Full, three dimensional, time-dependent simulations are presented demonstrating the quantized transfer of angular momentum to a Bose-Einstein condensate from a laser carrying orbital angular momentum in a Laguerre-Gaussian mode. The process is described in terms of coherent Bragg scattering of atoms from a chiral optical lattice. The transfer efficiency and the angular momentum content of the output coupled vortex state are analyzed and compared with a recent experiment.Comment: 4 pages, 4 figure

    Giant Vortex Lattice Deformations in Rapidly Rotating Bose-Einstein Condensates

    Full text link
    We have performed numerical simulations of giant vortex structures in rapidly rotating Bose-Einstein condensates within the Gross-Pitaevskii formalism. We reproduce the qualitative features, such as oscillation of the giant vortex core area, formation of toroidal density hole, and the precession of giant vortices, observed in the recent experiment [Engels \emph{et.al.}, Phys. Rev. Lett. {\bf 90}, 170405 (2003)]. We provide a mechanism which quantitatively explains the observed core oscillation phenomenon. We demonstrate the clear distinction between the mechanism of atom removal and a repulsive pinning potential in creating giant vortices. In addition, we have been able to simulate the transverse Tkachenko vortex lattice vibrations.Comment: 5 pages, 6 figures; revised description of core oscillation, new subfigur

    Virtual meson cloud of the nucleon and generalized parton distributions

    Full text link
    We present the general formalism required to derive generalized parton distributions within a convolution model where the bare nucleon is dressed by its virtual meson cloud. In the one-meson approximation the Fock states of the physical nucleon are expanded in a series involving a bare nucleon and two-particle, meson-baryon, states. The baryon is assumed here to be either a nucleon or a Δ\Delta described within the constituent quark model in terms of three valence quarks; correspondingly, the meson, assumed to be a pion, is described as a quark-antiquark pair. Explicit expressions for the unpolarized generalized parton distributions are obtained and evaluated in different kinematics.Comment: 37 pages, 9 figures, minor corrections, and figure 3 replaced; version to appear in Phys. Rev.

    Improved Semileptonic Form Factor Calculations in Lattice QCD

    Full text link
    We investigate the computational efficiency of two stochastic based alternatives to the Sequential Propagator Method used in Lattice QCD calculations of heavy-light semileptonic form factors. In the first method, we replace the sequential propagator, which couples the calculation of two of the three propagators required for the calculation, with a stochastic propagator so that the calculations of all three propagators are independent. This method is more flexible than the Sequential Propagator Method but introduces stochastic noise. We study the noise to determine when this method becomes competitive with the Sequential Propagator Method, and find that for any practical calculation it is competitive with or superior to the Sequential Propagator Method. We also examine a second stochastic method, the so-called ``one-end trick", concluding it is relatively inefficient in this context. The investigation is carried out on two gauge field ensembles, using the non-perturbatively improved Wilson-Sheikholeslami-Wohlert action with N_f=2 mass-degenerate sea quarks. The two ensembles have similar lattice spacings but different sea quark masses. We use the first stochastic method to extract O(a){\mathcal O}(a)-improved, matched lattice results for the semileptonic form factors on the ensemble with lighter sea quarks, extracting f_+(0)

    Mass of the b-quark and B-decay constants from Nf=2+1+1 twisted-mass Lattice QCD

    Get PDF
    We present precise lattice computations for the b-quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical quark flavors, up/down, strange and charm, at three values of the lattice spacing (a ~ 0.06 - 0.09 fm) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated to the physical pion mass and to the continuum limit and read: mb(MSbar, mb) = 4.26(10) GeV, mb/mc = 4.42(8), mb/ms = 51.4(1.4), fBs = 229(5) MeV, fB = 193(6) MeV, fBs/fB = 1.184(25) and (fBs/fB)/(fK/fpi) = 0.997(17).Comment: Version to appear in PRD. Added comments to simulation setup and error budget discussion. 1+20 pages, 9 figure
    • …
    corecore