1,890 research outputs found
Differently stained whole slide image registration technique with landmark validation
Abstract. One of the most significant features in digital pathology is to compare and fuse successive differently stained tissue sections, also called slides, visually. Doing so, aligning different images to a common frame, ground truth, is required. Current sample scanning tools enable to create images full of informative layers of digitalized tissues, stored with a high resolution into whole slide images. However, there are a limited amount of automatic alignment tools handling large images precisely in acceptable processing time. The idea of this study is to propose a deep learning solution for histopathology image registration. The main focus is on the understanding of landmark validation and the impact of stain augmentation on differently stained histopathology images. Also, the developed registration method is compared with the state-of-the-art algorithms which utilize whole slide images in the field of digital pathology.
There are previous studies about histopathology, digital pathology, whole slide imaging and image registration, color staining, data augmentation, and deep learning that are referenced in this study. The goal is to develop a learning-based registration framework specifically for high-resolution histopathology image registration. Different whole slide tissue sample images are used with a resolution of up to 40x magnification. The images are organized into sets of consecutive, differently dyed sections, and the aim is to register the images based on only the visible tissue and ignore the background. Significant structures in the tissue are marked with landmarks.
The quality measurements include, for example, the relative target registration error, structural similarity index metric, visual evaluation, landmark-based evaluation, matching points, and image details. These results are comparable and can be used also in the future research and in development of new tools. Moreover, the results are expected to show how the theory and practice are combined in whole slide image registration challenges. DeepHistReg algorithm will be studied to better understand the development of stain color feature augmentation-based image registration tool of this study. Matlab and Aperio ImageScope are the tools to annotate and validate the image, and Python is used to develop the algorithm of this new registration tool.
As cancer is globally a serious disease regardless of age or lifestyle, it is important to find ways to develop the systems experts can use while working with patients’ data. There is still a lot to improve in the field of digital pathology and this study is one step toward it.Eri menetelmin värjättyjen virtuaalinäytelasien rekisteröintitekniikka kiintopisteiden validointia hyödyntäen. Tiivistelmä. Yksi tärkeimmistä digitaalipatologian ominaisuuksista on verrata ja fuusioida peräkkäisiä eri menetelmin värjättyjä kudosleikkeitä toisiinsa visuaalisesti. Tällöin keskenään lähes identtiset kuvat kohdistetaan samaan yhteiseen kehykseen, niin sanottuun pohjatotuuteen. Nykyiset näytteiden skannaustyökalut mahdollistavat sellaisten kuvien luonnin, jotka ovat täynnä kerroksittaista tietoa digitalisoiduista näytteistä, tallennettuna erittäin korkean resoluution virtuaalisiin näytelaseihin. Tällä hetkellä on olemassa kuitenkin vain kourallinen automaattisia työkaluja, jotka kykenevät käsittelemään näin valtavia kuvatiedostoja tarkasti hyväksytyin aikarajoin. Tämän työn tarkoituksena on syväoppimista hyväksikäyttäen löytää ratkaisu histopatologisten kuvien rekisteröintiin. Tärkeimpänä osa-alueena on ymmärtää kiintopisteiden validoinnin periaatteet sekä eri väriaineiden augmentoinnin vaikutus. Lisäksi tässä työssä kehitettyä rekisteröintialgoritmia tullaan vertailemaan muihin kirjallisuudessa esitettyihin algoritmeihin, jotka myös hyödyntävät virtuaalinäytelaseja digitaalipatologian saralla.
Kirjallisessa osiossa tullaan siteeraamaan aiempia tutkimuksia muun muassa seuraavista aihealueista: histopatologia, digitaalipatologia, virtuaalinäytelasi, kuvantaminen ja rekisteröinti, näytteen värjäys, data-augmentointi sekä syväoppiminen. Tavoitteena on kehittää oppimispohjainen rekisteröintikehys erityisesti korkearesoluutioisille digitalisoiduille histopatologisille kuville. Erilaisissa näytekuvissa tullaan käyttämään jopa 40-kertaista suurennosta. Kuvat kudoksista on järjestetty eri menetelmin värjättyihin peräkkäisiin kuvasarjoihin ja tämän työn päämääränä on rekisteröidä kuvat pohjautuen ainoastaan kudosten näkyviin osuuksiin, jättäen kuvien tausta huomioimatta. Kudosten merkittävimmät rakenteet on merkattu niin sanotuin kiintopistein.
Työn laatumittauksina käytetään arvoja, kuten kohteen suhteellinen rekisteröintivirhe (rTRE), rakenteellisen samankaltaisuuindeksin mittari (SSIM), sekä visuaalista arviointia, kiintopisteisiin pohjautuvaa arviointia, yhteensopivuuskohtia, ja kuvatiedoston yksityiskohtia. Nämä arvot ovat verrattavissa myös tulevissa tutkimuksissa ja samaisia arvoja voidaan käyttää uusia työkaluja kehiteltäessä. DeepHistReg metodi toimii pohjana tässä työssä kehitettävälle näytteen värjäyksen parantamiseen pohjautuvalle rekisteröintityökalulle. Matlab ja Aperio ImageScope ovat ohjelmistoja, joita tullaan hyödyntämään tässä työssä kuvien merkitsemiseen ja validointiin. Ohjelmointikielenä käytetään Pythonia.
Syöpä on maailmanlaajuisesti vakava sairaus, joka ei katso ikää eikä elämäntyyliä. Siksi on tärkeää löytää uusia keinoja kehittää työkaluja, joita asiantuntijat voivat hyödyntää jokapäiväisessä työssään potilastietojen käsittelyssä. Digitaalipatologian osa-alueella on vielä paljon innovoitavaa ja tämä työ on yksi askel eteenpäin taistelussa syöpäsairauksia vastaan
Primary central nervous system lymphoma:diagnostic path and significant delays
Abstract. Primary central nervous system lymphoma (PCNSL) is a very aggressive non-Hodgkin lymphoma. It restricts to the central nervous system and has a low survival rate while responding well to radiation and chemotherapy. The immunohistochemical profile, mutation analysis, cytokines from cerebrospinal fluid (CSF) and oedema occurring might have diagnostic and prognostic value when suspecting PCNSL. PCNSL has a lower mass effect, leading to less oedema compared with same size other tumours such as gliomas or metastases.
PCNSL reacts favourably to glucocorticoids, such as dexamethasone, but they might also interfere with the diagnosis, leading to delay in the diagnostic path. This is something that requires assessment in the future. An oedema and its mass effect grading system could help with decision to refrain from dexamethasone usage if lymphoma is suspected. The longest delay causing factor in OYS and KYS was waiting for the biopsy. This problem could be dealt with the possibility to do on-call biopsy or with the CSF fluid analysis leading to diagnosis.Primääri aivolymfooma : diagnostiikkapolku ja merkittävät viiveet. Tiivistelmä. Primaariaivolymfooma on aggressiivinen non-Hodginin lymfooma, joka rajoittuu keskushermostoon. Kuolleisuus on korkea huolimatta usein hyvästä alkuvaiheen säde- ja sytostaattihoitovasteesta. Diagnoosi perustuu immonohistokemiallisiin tutkimuksiin ja tarvittaessa mutaatioanalyyseihin. Aivolymfoomilla on yleensä pienempi massavaikutus ja vähemmän aivoturvotusta kuin glioomilla tai aivometastaaseilla. Primaariaivolymfooma reagoi hyvin glukokortikoideihin, kuten dexametasoniin, mutta ne voivat merkittävästi vaikeuttaa ja viivästyttää diagnostiikkaa. Tämä tarvitsee jatkotutkimuksia. Aivoturvotuksen ja sen massaefektin luokittelujärjestelmä voisi auttaa dexametasonin käytöstä pidättäytymisessä, mikäli epäillään aivolymfoomaa. Pisimmän viiveen aiheuttava tekijä OYS:ssä ja KYS:ssä oli biopsian odottaminen. Tämä ongelma voitaisiin välttää päivystysbiopsian mahdollisuudella tai likvorin analytiikan tehostamisella
Carbon dynamics in a Boreal land-stream-lake continuum during the spring freshet of two hydrologically contrasting years
We studied in 2013 and 2014 the spring carbon dynamics in a Boreal landscape consisting of a lake and 15 inflowing streams and an outlet. The first year had weather and a hydrological regime typical of past years with a distinct spring freshet connected with the thaw of the average snowpack. The latter year had higher air temperatures which did not permit snow accumulation, despite similar winter precipitation. As such, there was hardly any spring freshet in 2014, and stream discharge peaked in January, i.e., the conditions resembled those predicted in the future climate. Despite the hydrological differences between the years, there were only small interannual differences in the stream CO2 and DOC concentrations. The relationship between the concentrations and discharge was stronger in the typical year. CO2 concentrations in medium-sized streams correlated negatively with the discharge, indicating dilution effect of melting snowpacks, while in large-sized streams the correlation was positive, suggesting stronger groundwater influence. The DOC pathway to these streams was through the subsurface soil layers, not the groundwater. The total amount of carbon transported into the lake was ca. 1.5-fold higher in the typical year than in the year with warm winter. In 2013, most of the lateral inputs took place during spring freshet. In 2014, the majority of inputs occurred earlier, during the winter months. The lateral CO2 signal was visible in the lake at 1.5 m depth. DOC dominated the carbon transport, and in both years, 12% of the input C was in inorganic form.Peer reviewe
Classification of unknown primary tumors with a data-driven method based on a large microarray reference database
We present a new method to analyze cancer of unknown primary origin (CUP) samples. Our method achieves good results with classification accuracy (88% leave-one-out cross validation for primary tumors from 56 categories, 78% for CUP samples), and can also be used to study CUP samples on a gene-by-gene basis. It is not tied to any a priori defined gene set as many previous methods, and is adaptable to emerging new information
MinMax Radon Barcodes for Medical Image Retrieval
Content-based medical image retrieval can support diagnostic decisions by
clinical experts. Examining similar images may provide clues to the expert to
remove uncertainties in his/her final diagnosis. Beyond conventional feature
descriptors, binary features in different ways have been recently proposed to
encode the image content. A recent proposal is "Radon barcodes" that employ
binarized Radon projections to tag/annotate medical images with content-based
binary vectors, called barcodes. In this paper, MinMax Radon barcodes are
introduced which are superior to "local thresholding" scheme suggested in the
literature. Using IRMA dataset with 14,410 x-ray images from 193 different
classes, the advantage of using MinMax Radon barcodes over \emph{thresholded}
Radon barcodes are demonstrated. The retrieval error for direct search drops by
more than 15\%. As well, SURF, as a well-established non-binary approach, and
BRISK, as a recent binary method are examined to compare their results with
MinMax Radon barcodes when retrieving images from IRMA dataset. The results
demonstrate that MinMax Radon barcodes are faster and more accurate when
applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on
Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US
Correlating Pedestrian Flows and Search Engine Queries
An important challenge for ubiquitous computing is the development of
techniques that can characterize a location vis-a-vis the richness and
diversity of urban settings. In this paper we report our work on correlating
urban pedestrian flows with Google search queries. Using longitudinal data we
show pedestrian flows at particular locations can be correlated with the
frequency of Google search terms that are semantically relevant to those
locations. Our approach can identify relevant content, media, and
advertisements for particular locations.Comment: 4 pages, 1 figure, 1 tabl
Faecal Cortisol Metabolites as an Indicator of Adrenocortical Activity in Farmed Blue Foxes
Welfare studies of blue foxes would benefit from a measurement of faecal cortisol metabolites (FCMs) as a non-invasive, physiological stress parameter reflecting hypothalamus–pituitary–adrenal (HPA) axis activity. Before implementation, a species-specific validation of such a method is required. Therefore, we conducted a physiological validation of an enzyme immunoassay (EIA) to measure FCMs in blue foxes. Twenty individuals (nine males and eleven females) were injected with synthetic adrenocorticotrophic hormone (ACTH) and faecal samples were collected every third h for two days. The FCM baseline levels were assessed based on the first sampling day (control period, 144 samples), followed by the ACTH injection and the second day of sampling (treatment period, 122 samples). FCMs were analysed with a 5α-pregnane-3ß,11ß,21-triol-20-one EIA. We compared the estimated mean FCM concentrations of the treatment samples to the baseline average. All samples for the two periods were collected at the same time of the day, which enabled to test the data also with an hourly pairwise comparison. With the two statistical approaches, we tested whether a possible diurnal fluctuation in the FCM concentrations affected the interpretation of the results. Compared to the baseline levels, both approaches showed 2.4–3.2 times higher concentrations on time points sampled 8–14 h after the ACTH injection (p < 0.05). The estimated FCM concentrations also fluctuated slightly within the control period (p < 0.01). Inter-individual variations in FCM levels were marked, which highlights the importance of having a sufficient number of animals in experiments utilising FCMs. The sampling intervals of 3 h enabled forming of informative FCM curves. Taken together, this study proves that FCM analysis with a 5α-pregnane-3ß,11ß,21-triol-20-one EIA is a valid measurement of adrenocortical activity in the farmed blue foxes. Therefore, it can be utilised as a non-invasive stress indicator in future animal welfare studies of the species
Faecal Cortisol Metabolites as an Indicator of Adrenocortical Activity in Farmed Blue Foxes
Welfare studies of blue foxes would benefit from a measurement of faecal cortisol metabolites (FCMs) as a non-invasive, physiological stress parameter reflecting hypothalamus–pituitary–adrenal (HPA) axis activity. Before implementation, a species-specific validation of such a method is required. Therefore, we conducted a physiological validation of an enzyme immunoassay (EIA) to measure FCMs in blue foxes. Twenty individuals (nine males and eleven females) were injected with synthetic adrenocorticotrophic hormone (ACTH) and faecal samples were collected every third h for two days. The FCM baseline levels were assessed based on the first sampling day (control period, 144 samples), followed by the ACTH injection and the second day of sampling (treatment period, 122 samples). FCMs were analysed with a 5α-pregnane-3ß,11ß,21-triol-20-one EIA. We compared the estimated mean FCM concentrations of the treatment samples to the baseline average. All samples for the two periods were collected at the same time of the day, which enabled to test the data also with an hourly pairwise comparison. With the two statistical approaches, we tested whether a possible diurnal fluctuation in the FCM concentrations affected the interpretation of the results. Compared to the baseline levels, both approaches showed 2.4–3.2 times higher concentrations on time points sampled 8–14 h after the ACTH injection (p < 0.05). The estimated FCM concentrations also fluctuated slightly within the control period (p < 0.01). Inter-individual variations in FCM levels were marked, which highlights the importance of having a sufficient number of animals in experiments utilising FCMs. The sampling intervals of 3 h enabled forming of informative FCM curves. Taken together, this study proves that FCM analysis with a 5α-pregnane-3ß,11ß,21-triol-20-one EIA is a valid measurement of adrenocortical activity in the farmed blue foxes. Therefore, it can be utilised as a non-invasive stress indicator in future animal welfare studies of the species
Asymmetric representation of aversive prediction errors in Pavlovian threat conditioning
Learning to predict threat is important for survival. Such learning may be driven by differences between expected and encountered outcomes, termed prediction errors (PEs). While PEs are crucial for reward learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans to investigate neural PE signals. Four cues, each with a different probability of being followed by an aversive outcome, were presented multiple times. We found that neural activity only at omission - but not at occurrence - of predicted threat related to PEs in the medial prefrontal cortex. More expected omission was associated with higher neural activity. In no brain region did neural activity fulfill necessary computational criteria for full signed PE representation. Our result suggests that, different from reward learning, aversive learning may not be primarily driven by PE signals in one single brain region
- …