15 research outputs found
Allergy / Distinct epitope structures of defensin\u2010like proteins linked to proline\u2010rich regions give rise to differences in their allergenic activity
Background: Art v 1, Amb a 4, and Par h 1 are allergenic defensin\u2010polyproline\u2013linked proteins present in mugwort, ragweed, and feverfew pollen, respectively. We aimed to investigate the physicochemical and immunological features underlying the different allergenic capacities of those allergens.
Methods: Recombinant defensin\u2010polyproline\u2013linked proteins were expressed in E. coli and physicochemically characterized in detail regarding identity, secondary structure, and aggregation status. Allergenic activity was assessed by mediator releases assay, serum IgE reactivity, and IgE inhibition ELISA using sera of patients from Austria, Canada, and Korea. Endolysosomal protein degradation and T\u2010cell cross\u2010reactivity were studied in vitro.
Results: Despite variations in the proline\u2010rich region, similar secondary structure elements were observed in the defensin\u2010like domains. Seventy\u2010four percent and 52% of the Austrian and Canadian patients reacted to all three allergens, while Korean patients were almost exclusively sensitized to Art v 1. This was reflected by IgE inhibition assays demonstrating high cross\u2010reactivity for Austrian, medium for Canadian, and low for Korean sera. In a subgroup of patients, IgE reactivity toward structurally altered Amb a 4 and Par h 1 was not changed suggesting involvement of linear epitopes. Immunologically relevant endolysosomal stability of the defensin\u2010like domain was limited to Art v 1 and no T\u2010cell cross\u2010reactivity with Art v 125\u201036 was observed.
Conclusions: Despite structural similarity, different IgE\u2010binding profiles and proteolytic processing impacted the allergenic capacity of defensin\u2010polyproline\u2013linked molecules. Based on the fact that Amb a 4 demonstrated distinct IgE\u2010binding epitopes, we suggest inclusion in molecule\u2010based allergy diagnosis
The small molecule inhibitor BX-795 uncouples IL-2 production from inhibition of Th2 inflammation and induces CD4+ T cells resembling iTreg
BackgroundTreg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development.ObjectiveTo evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds.Materials and methodsWe used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds.ResultsWe show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils.ConclusionsBX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases
Blocking antibodies induced by allergen-specific immunotherapy ameliorate allergic airway disease in a human/mouse chimeric model
Genetic restriction of antigen-presentation dictates allergic sensitization and disease in humanized mice.
Immunoglobulin(Ig)E-associated allergies result from misguided immune responses against innocuous antigens. CD4+ T lymphocytes are critical for initiating and perpetuating that process, yet the crucial factors determining whether an individual becomes sensitized towards a given allergen remain largely unknown
Scientific Reports / Janus-faced Acrolein prevents allergy but accelerates tumor growth by promoting immunoregulatory Foxp3+ cells: Mouse model for passive respiratory exposure
Acrolein, a highly reactive unsaturated aldehyde, is generated in large amounts during smoking and is best known for its genotoxic capacity. Here, we aimed to assess whether acrolein at concentrations relevant for smokers may also exert immunomodulatory effects that could be relevant in allergy or cancer. In a BALB/c allergy model repeated nasal exposure to acrolein abrogated allergen-specific antibody and cytokine formation, and led to a relative accumulation of regulatory T cells in the lungs. Only the acrolein-treated mice were protected from bronchial hyperreactivity as well as from anaphylactic reactions upon challenge with the specific allergen. Moreover, grafted D2F2 tumor cells grew faster and intratumoral Foxp3+ cell accumulation was observed in these mice compared to sham-treated controls. Results from reporter cell lines suggested that acrolein acts via the aryl-hydrocarbon receptor which could be inhibited by resveratrol and 3′-methoxy-4′-nitroflavone Acrolein- stimulation of human PBMCs increased Foxp3+ expression by T cells which could be antagonized by resveratrol. Our mouse and human data thus revealed that acrolein exerts systemic immunosuppression by promoting Foxp3+ regulatory cells. This provides a novel explanation why smokers have a lower allergy, but higher cancer risk.(VLID)486818
Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions
We describe for the first time fluorescent virus-like particles decorated with biologically active mono- and multisubunit immune receptors of choice and the basic application of such fluorosomes (FSs) to visualize and target immune receptor-ligand interactions. For that purpose, human embryonic kidney (HEK)-293 cells were stably transfected with Moloney murine leukemia virus (MoMLV) matrix protein (MA) GFP fusion constructs. To produce FSs, interleukins (ILs), IL-receptors (IL-Rs), and costimulatory molecules were fused to the glycosyl phosphatidyl inositol anchor acceptor sequence of CD16b and coexpressed along with MoMLV group-specific antigen-polymerase (gag-pol) in MA::GFP+ HEK-293 cells. We show that IL-2 decorated but not control-decorated FSs specifically identify normal and malignant IL-2 receptor-positive (IL-2R+) lymphocytes by flow cytometry. In addition to cytokines and costimulatory molecules, FSs were also successfully decorated with the heterotrimeric IL-2Rs, allowing identification of IL-2+ target cells. Specificity of binding was proven by complete inhibition with nonlabeled, soluble ligands. Moreover, IL-2R FSs efficiently neutralized soluble IL-2 and thus induced unresponsiveness of T cells receiving full activation stimuli via T-cell antigen receptor and CD28. FSs are technically simple, multivalent tools for assessing and blocking mono- and multisubunit immune receptor-ligand interactions with natural constituents in a plasma membrane context.—Kueng, H. J., Manta, C., Haiderer, D., Leb, V. M., Schmetterer, K. G., Neunkirchner, A., Byrne, R. A., Scheinecker, C., Steinberger, P., Seed, B., Pickl, W. F. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions
DataSheet_1_The small molecule inhibitor BX-795 uncouples IL-2 production from inhibition of Th2 inflammation and induces CD4+ T cells resembling iTreg.docx
BackgroundTreg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development.ObjectiveTo evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds.Materials and methodsWe used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds.ResultsWe show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils.ConclusionsBX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.</p
Direct stimulation of T lymphocytes by immunosomes: Virus-like particles decorated with T cell receptor/CD3 ligands plus costimulatory molecules
Many infectious viruses coevolved with the vertebrate immune system. During the assembly of enveloped viruses, lipid ordered domains of the host cell plasma membrane, called lipid rafts, frequently function as a natural meeting point for viral proteins. The role of lipid rafts in the organization of complex combinations of immune receptors during antigen presentation and T cell signaling is widely recognized. In our studies, we determined whether lipid rafts, virus budding, and molecular interactions during T cell activation could be brought into a novel context to create artificial antigen-presenting particles. We show here that cell-free virus-like particles (VLP) expressing a surrogate TCR/CD3 ligand (OKT3scFv) and the costimulator CD80 polyclonally activate human T cells independently of accessory cells. VLP expressing the glycoprotein epitope 33–41 of the lymphocytic choriomeningitis virus in the context of H-2D(b) activate and expand naïve, antigen-specific CD8(+) T lymphocytes and differentiate them into cytotoxic effector cells. Efficient targeting of T cell ligands to lipid rafts and ultimately to VLP is achieved by C-terminal introduction of glycosyl phosphatidyl inositol acceptor sequences, replacing transmembrane and intracellular domains. In this work, basic functions of immunostimulatory molecules meet virus biology and translate into a reductionist antigen-specific T lymphocyte-stimulating vehicle, which we refer to as immunosomes. A large variety of agonistic and antagonistic accessory molecules on genuine antigen-presenting cells may complicate the predictable manipulation of T cells as well as the analysis of selected receptor combinations, making immunosomes potentially useful reagents for such purposes in the future
Creation of an engineered APC system to explore and optimize the presentation of immunodominant peptides of major allergens
We have generated engineered APC to present immunodominant peptides derived from the major aero-allergens of birch and mugwort pollen, Bet v 1(142–153) and Art v 1(25–36), respectively. Jurkat-based T cell reporter lines expressing the cognate allergen-specific T cell receptors were used to read out the presentation of allergenic peptides on the engineered APC. Different modalities of peptide loading and presentation on MHC class II molecules were compared. Upon exogenous loading with allergenic peptides, the engineered APC elicited a dose-dependent response in the reporter T cells and the presence of chemical loading enhancers strongly increased reporter activation. Invariant chain-based MHC class II targeting strategies of endogenously expressed peptides resulted in stronger activation of the reporters than exogenous loading. Moreover, we used Bet v 1 as model allergen to study the ability of K562 cells to present antigenic peptides derived from whole proteins either taken up or endogenously expressed as LAMP-1 fusion protein. In both cases the ability of these cells to process and present peptides derived from whole proteins critically depended on the expression of HLA-DM. We have identified strategies to achieve efficient presentation of allergenic peptides on engineered APC and demonstrate their use to stimulate T cells from allergic individuals
