100 research outputs found
Multiscale modelling of snow depth over an agricultural field in a small catchement in southern ontario, canada.
Snow is a common overlying surface during winter-time and the redistribution of snow by wind is a very important concept for any hydrological research project located within the cryosphere. Wind redistributes snow by eroding it from areas of high wind speed, such as ridge tops and windward slopes, and deposits it in areas of lower wind speeds, such as the lees of ridge tops, vegetation stands, and topographic depressions. The accurate modelling of blowing snow processes such as erosion, deposition, and sublimation have proven to be rather problematic. The largest issue that many modellers must deal with is the accurate collection of solid precipitation throughout the winter season. Without this, incorrect energy and mass balances can occur. This thesis makes use of a new method of acquiring solid precipitation values through the use of an SR50a ultrasonic snow depth sensor and then incorporates it into a version of the Cold Regions Hydrological Model (CRHM) which includes the Prairie Blowing Snow Model (PBSM) and the Minimal Snowmelt Model (MSM) modules. The model is used to simulate seasonal snow depth over an agricultural field in southern Ontario, Canada and is driven with half-hourly locally acquired meteorological data for 83 days during the 2008-2009 winter season. Semi-automated snow surveys are conducted throughout the winter season and the collected in situ snow depth values are compared to the simulated snow depth values at multiple scales. Two modelling approaches are taken to temporally and spatially test model performance. A lumped approach tests the model‟s ability to simulate snow depth from a small point scale and from a larger field scale. A distributed approach separates the entire field site into three hydrological response units (HRUs) and tests the model‟s ability to spatially discretize at the field scale. HRUs are differentiated by varying vegetation heights throughout the field site. Temporal analysis compares the simulated results to each day of snow survey and for the entire field season. Model performance is statistically analyzed through the use of a Root Mean Square Difference (RMSD), Nash-Sutcliffe coefficient (NS), and Model Bias (MB). Both the lumped and distributed modelling approaches fail to simulate the early on-set of snow but once the snow-holding capacities are reached within the field site the model does well to simulate the average snow depth during the latter few days of snow survey as well as throughout the entire field season. Several model limitations are present which prevent the model from incorporating the scaling effects of topography, vegetation, and man-made objects as well as the effects from certain energy fluxes. These limitations are discussed further
Real time measurement of intramuscular pH during routine knee arthroscopy using a tourniquet
Funding statement This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.Peer reviewedPublisher PD
A t(11;15) fuses MLL to two different genes, AF15q14 and a novel gene MPFYVE on chromosome 15
The mixed lineage leukemia gene (MLL, also known as HRX, ALL-1 and Htrx) located at 11q23 is involved in translocations with over 40 different chromosomal bands in a variety of leukemia subtypes. Here we report our analysis of a rare but recurring translocation, t(11;15)(q23;q14). This translocation has been described in a small subset of cases with both acute myeloblastic leukemia and ALL. Recent studies have shown that MLL is fused to AF15q14 in the t(11;15). Here we analyse a sample from another patient with this translocation and confirm the presence of an MLL-AF15q14 fusion. However, we have also identified and cloned another fusion transcript from the same patient sample. In this fusion transcript, MLL is fused to a novel gene, MLL partner containing FYVE domain (MPFYVE). Both MLL-AF15q14 and MLL-MPFYVE are in-frame fusion transcripts with the potential to code for novel fusion proteins. MPFYVE is also located on chromosome 15, approximately 170 kb telomeric to AF15q14. MPFYVE contains a highly conserved motif, the FYVE domain which, in other proteins, has been shown to bind to phosphotidyl-inositol-3 phosphate (PtdIns(3)P). The MLL-MPFYVE fusion may be functionally important in the leukemia process in at least some patients containing this translocation
Recommended from our members
Paroxysmal Nocturnal Hemoglobinuria screening practice from UK centres: a report from the UK PNH network
A New Class of Safe Oligosaccharide Polymer Therapy To Modify the Mucus Barrier of Chronic Respiratory Disease
The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12–15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins. Ex vivo studies showed binding induced alterations in mucin surface charge and porosity of the three-dimensional mucin networks in cystic fibrosis (CF) sputum. Studies in Humans showed that OligoG CF-5/20 is safe for inhalation in CF patients with effective lung deposition and modifies the viscoelasticity of CF-sputum. OligoG CF-5/20 is the first inhaled polymer therapy, represents a novel mechanism of action and therapeutic approach for the treatment of chronic respiratory disease, and is currently in Phase IIb clinical trials for the treatment of CF
Increased plasma thioredoxin levels in patients with sepsis: positive association with macrophage migration inhibitory factor.
PURPOSE: To establish the relationship between plasma levels of thioredoxin (Trx) and macrophage migration inhibitory factor (MIF) in systemic inflammatory stress syndrome (SIRS)/sepsis. METHODS: Enzyme-linked immunosorbent assay measurements of Trx, MIF, IL-6, -8, and -10 and enzyme-linked fluorescent assay determination of procalcitonin (PCT) in plasma from patients with SIRS/sepsis, neutropenic sepsis, healthy volunteers and pre-oesophagectomy patients. RESULTS: Thioredoxin was significantly higher in SIRS/sepsis patients [101.3 ng ml(−1), interquartile range (IQR) 68.7–155.6, n = 32] compared with that in healthy controls (49.5 ng ml(−1), IQR 31.4–71.1, P < 0.001, n = 17) or pre-oesophagectomy patients (40.5 ng ml(−1), IQR 36.9–63.2, P < 0.01, n = 7), but was not raised in neutropenics (n = 5). MIF levels were also significantly higher in SIRS/sepsis patients (12.1 ng ml(−1), IQR 9.5–15.5, n = 35), but not in the neutropenic group, when compared with healthy controls (9.3 ng ml(−1), IQR 7.3–10.7, P < 0.01, n = 20). Trx levels correlated, positively, with MIF levels and APACHE II scores. Plasma levels of IL-6, -8 and -10 and PCT increased significantly in patients with SIRS/sepsis (P < 0.001) and with neutropenic sepsis, but did not correlate with Trx or MIF levels. CONCLUSION: Plasma levels of Trx, MIF, IL-6, -8, -10 and PCT were raised in patients with SIRS/sepsis. Comparisons between mediators suggest a unique correlation of Trx with MIF. Moreover, Trx and MIF differed from cytokines and PCT in that levels were significantly lower in patients with neutropenia compared with the main SIRS/sepsis group. By contrast, IL-8 and PCT levels were significantly greater in the neutropenic patient group. The link between MIF and Trx highlighted in this study has implications for future investigations into the pathogenesis of SIRS/sepsis
miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy
Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: Evidence from a review of advanced functional neuroimaging
Purpose: A review of all published evidence for mapping eloquent (motor, language and memory) cortex using advanced functional neuroimaging (functional magnetic resonance imaging [fMRI] and magnetoencephalography [MEG]) for paediatric epilepsy surgery candidates has not been conducted previously. Research in this area has predominantly been in adult populations and applicability of these techniques to paediatric populations is less established. Methods: A review was performed using an advanced systematic search and retrieval of all published papers examining the use of functional neuroimaging for paediatric epilepsy surgery candidates. Results: Of the 2,724 papers retrieved, 34 met the inclusion criteria. Total paediatric participants identified were 353 with an age range of 5 months-19 years. Sample sizes and comparisons with alternative investigations to validate techniques are small and variable paradigms are used. Sensitivity 0.72 (95% CI 0.52-0.86) and specificity 0.60 (95% CI 0.35-0.92) values with a Positive Predictive Value of 74% (95% CI 61-87) and a Negative Predictive Value of 65% (95% CI 52-78) for fMRI language lateralisation with validation, were obtained. Retrieved studies indicate evidence that both fMRI and MEG are able to provide information lateralising and localising motor and language functions. Conclusions: A striking finding of the review is the paucity of studies (n = 34) focusing on the paediatric epilepsy surgery population. For children, it remains unclear which language and memory paradigms produce optimal activation and how these should be quantified in a statistically robust manner. Consensus needs to be achieved for statistical analyses and the uniformity and yield of language, motor and memory paradigms. Larger scale studies are required to produce patient series data which clinicians may refer to interpret results objectively. If functional imaging techniques are to be the viable alternative for pre-surgical mapping of eloquent cortex for children, paradigms and analyses demonstrating concordance with independent measures must be developed
Has primary care antimicrobial use really been increasing? Comparison of changes in different prescribing measures for a complete geographic population 1995-2014
Objectives To elucidate how population trends in total antimicrobials dispensed in the community translate into individual exposure. Methods Retrospective, population-based observational study of all antimicrobial prescribing in a Scottish region in financial years 1995, 2000 and 2005–14. Analysis of temporal changes in all antimicrobials and specific antimicrobials measured in: WHO DDD per 1000 population; prescriptions per 1000 population; proportion of population with ≥1 prescription; mean number of prescriptions per person receiving any; mean DDD per prescription. Results Antimicrobial DDD increased between 1995 and 2014, from 5651 to 6987 per 1000 population [difference 1336 (95% CI 1309–1363)]. Prescriptions per 1000 fell (from 821 to 667, difference –154, –151 to –157), as did the proportion prescribed any antimicrobial [from 39.3% to 30.8% (–8.5, –8.4 to –8.6)]. Rising mean DDD per prescription, from 6.88 in 1995 to 10.47 in 2014 (3.59, 3.55–3.63), drove rising total DDD. In the under-5s, every measure fell over time (68.2% fall in DDD per 1000; 60.7% fall in prescriptions per 1000). Among 5–64 year olds, prescriptions per 1000 were lowest in 2014 but among older people, despite a reduction since 2010, the 2014 rate was still higher than in 2000. Trends in individual antimicrobials provide some explanation for overall trends. Conclusions Rising antimicrobial volumes up to 2011 were mainly due to rising DDD per prescription. Trends in dispensed drug volumes do not readily translate into information on individual exposure, which is more relevant for adverse consequences including emergence of resistance.PostprintPeer reviewe
- …