108 research outputs found

    Theory of laser-induced demagnetization at high temperatures

    Full text link
    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins and lattice. Assuming that the demagnetization processes take place during the thermalization of the sub-systems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnons and electron-phonons interaction, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat assisted magnetic recording.Comment: 11 Pages, 7 Figure

    Spin Orientation of Holes in Quantum Wells

    Full text link
    This paper reviews the spin orientation of spin-3/2 holes in quantum wells. We discuss the Zeeman and Rashba spin splitting in hole systems that are qualitatively different from their counterparts in electron systems. We show how a systematic understanding of the unusual spin-dependent phenomena in hole systems can be gained using a multipole expansion of the spin density matrix. As an example we discuss spin precession in hole systems that can give rise to an alternating spin polarization. Finally, we discuss the qualitatively different regimes of hole spin polarization decay in clean and dirty samples.Comment: 14 pages, 8 figure

    Non-Markovian spin relaxation in two-dimensional electron gas

    Full text link
    We analyze by Monte-Carlo simulations and analytically spin dynamics of two-dimensional electron gas (2DEG) interacting with short-range scatterers in nonquantizing magnetic fields. It is shown that the spin dynamics is non-Markovian with the exponential spin relaxation followed by the oscillating tail due to the electrons residing on the closed trajectories. The tail relaxes on a long time scale due to an additional smooth random potential and inelastic processes. The developed analytical theory and Monte-Carlo simulations are in the quantitative agreement with each other.Comment: 6 pages, 3 figure

    Laser in the axial electric field as a tool to search for P-, T- invariance violation

    Full text link
    We consider rotation of polarization plane of the laser light when a gas laser is placed in a longitudinal electric field (10~kV/cm). It is shown that residual anisotropy of the laser cavity 10^{-6} and the sensitivity to the angle of polarization plane rotation about 10^{-11} -10^{-12} rad allows one to measure an electron EDM with the sensitivity about 10^{-30} e cm.Comment: 12 page

    Magneto-gyrotropic effects in semiconductor quantum wells (review)

    Full text link
    Magneto-gyrotropic photogalvanic effects in quantum wells are reviewed. We discuss experimental data, results of phenomenological analysis and microscopic models of these effects. The current flow is driven by spin-dependent scattering in low-dimensional structures gyrotropic media resulted in asymmetry of photoexcitation and relaxation processes. Several applications of the effects are also considered.Comment: 28 pages, 13 figure

    QCD Heat Kernel in Covariant Gauge

    Full text link
    We report the calculation of the fourth coefficient in an expansion of the heat kernel of a non-minimal, non-abelian kinetic operator in an arbitrary background gauge in arbitrary space-time dimension. The fourth coefficient is shown to bring a nontrivial gauge dependence due to the contribution of the lowest order off-shell gauge invariant structure.Comment: 6 pages + title page, standart LaTe

    QCD partition function in the external field in the covariant gauge

    Full text link
    The QCD partition function in the external stationary gluomagnetic field is computed in the third order in external field invariants in arbitrary dimension and arbitrary covariant gauge. The contributions proportional to third order invariants in gluon field strength are shown to be dependent on covariant quantum gauge fixing parameter \alph

    Spin relaxation in low-dimensional systems

    Full text link
    We review some of the newest findings on the spin dynamics of carriers and excitons in GaAs/GaAlAs quantum wells. In intrinsic wells, where the optical properties are dominated by excitonic effects, we show that exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors. In doped wells, the two spin components of an optically created two-dimensional electron gas are well described by Fermi-Dirac distributions with a common temperature but different chemical potentials. The rate of the spin depolarization of the electron gas is found to be independent of the mean electron kinetic energy but accelerated by thermal spreading of the carriers.Comment: 1 PDF file, 13 eps figures, Proceedings of the 1998 International Workshop on Nanophysics and Electronics (NPE-98)- Lecce (Italy
    • …
    corecore