564 research outputs found
Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data
Using the ``modified DPMJET-III'' model explained in the previous paper, we
calculate the atmospheric neutrino flux. The calculation scheme is almost the
same as HKKM04 \cite{HKKM2004}, but the usage of the ``virtual detector'' is
improved to reduce the error due to it. Then we study the uncertainty of the
calculated atmospheric neutrino flux summarizing the uncertainties of
individual components of the simulation. The uncertainty of -production in
the interaction model is estimated by modifying FLUKA'97 and Fritiof 7.02 so
that they also reproduce the atmospheric muon flux data correctly, and the
calculation of the atmospheric neutrino flux with those modified interaction
models. The uncertainties of the flux ratio and zenith angle dependence of the
atmospheric neutrino flux are also studied
Thermal Fluctuations of Induced Fermion Number
We analyze the phemomenon of induced fermion number at finite temperature. At
finite temperature, the induced fermion number is a thermal expectation
value, and we compute the finite temperature fluctuations, . While the zero temperature induced fermion number is
topological and is a sharp observable, the finite temperature induced fermion
number is generically nontopological, and is not a sharp observable. The
fluctuations are due to the mixing of states inherent in any finite temperature
expectation value. We analyze in detail two different cases in 1+1 dimensional
field theory: fermions in a kink background, and fermions in a chiral sigma
model background. At zero temperature the induced fermion numbers for these two
cases are very similar, but at finite temperature they are very different. The
sigma model case is generic and the induced fermion number is nontopological,
but the kink case is special and the fermion number is topological, even at
finite temperature. There is a simple physical interpretation of all these
results in terms of the spectrum of the fermions in the relevant background,
and many of the results generalize to higher dimensional models.Comment: 17 pgs, 9 figs, RevTex
Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum
Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC50 values from 30 nM to 1.6 μM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents. © 2009 Elsevier Ltd. All rights reserved
Constraining Almost Degenerate Three-Flavor Neutrinos
We discuss constraints on a scenario of almost degenerate three-flavor
neutrinos imposed by the solar and the atmospheric neutrino anomalies, hot dark
matter, and neutrinoless double decays. It is found that in the
Majorana version of the model the region with relatively large is
favored and a constraint on the CP violating phases is obtained.Comment: 19 pages (uses revtex), including 6 figures (uses epsf
Accelerator and Reactor Neutrino Oscillation Experiments in a Simple Three-Generation Framework
We present a new approach to the analysis of neutrino oscillation
experiments, in the one mass-scale limit of the three-generation scheme. In
this framework we reanalyze and recombine the most constraining accelerator and
reactor data, in order to draw precise bounds in the new parameter space. We
consider our graphical representations as particularly suited to show the
interplay among the different oscillation channels. Within the same framework,
the discovery potential of future short and long baseline experiments is also
investigated, in the light of both the recent signal from the LSND experiment
and the atmospheric neutrino anomaly.Comment: uuencoded compressed tar file. Figures (13) available by ftp to
ftp://eku.sns.ias.edu/pub/lisi/ (192.16.204.30). Submitted to Physical Review
Status of global fits to neutrino oscillations
We review the present status of global analyses of neutrino oscillations,
taking into account the most recent neutrino data including the latest KamLAND
and K2K updates presented at Neutrino2004, as well as state-of-the-art solar
and atmospheric neutrino flux calculations. We give the two-neutrino solar +
KamLAND results, as well as two-neutrino atmospheric + K2K oscillation regions,
discussing in each case the robustness of the oscillation interpretation
against departures from the Standard Solar Model and the possible existence of
non-standard neutrino physics. Furthermore, we give the best fit values and
allowed ranges of the three-flavour oscillation parameters from the current
worlds' global neutrino data sample and discuss in detail the status of the
small parameters \alpha \equiv \Dms/\Dma as well as ,
which characterize the strength of CP violating effects in neutrino
oscillations. We also update the degree of rejection of four-neutrino
interpretations of the LSND anomaly in view of the most recent developments.Comment: v6: In the last Appendix we provide updated neutrino oscillation
results which take into account the relevant oscillation data released by the
MINOS and KamLAND collaboration
The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.
p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate
Nontopological finite temperature induced fermion number
We show that while the zero temperature induced fermion number in a chiral sigma model background depends only on the asymptotic values of the chiral field, at finite temperature the induced fermion number depends also on the detailed shape of the chiral background. We resum the leading low temperature terms to all orders in the derivative expansion, producing a simple result that can be interpreted physically as the different effect of the chiral background on virtual pairs of the Dirac sea and on the real particles of the thermal plasma. By contrast, for a kink background, not of sigma model form, the finite T induced fermion number is temperature dependent but topological.I. J. R. Aitchison and G.V. Dunn
Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα
© 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication dateMitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology
Shower Power: Isolating the Prompt Atmospheric Neutrino Flux Using Electron Neutrinos
At high energies, the very steep decrease of the conventional atmospheric
component of the neutrino spectrum should allow the emergence of even small and
isotropic components of the total spectrum, indicative of new physics, provided
that they are less steeply decreasing, as generically expected. One candidate
is the prompt atmospheric neutrino flux, a probe of cosmic ray composition in
the region of the knee as well as small- QCD, below the reach of collider
experiments. A second is the diffuse extragalactic background due to distant
and unresolved AGNs and GRBs, a key test of the nature of the highest-energy
sources in the universe. Separating these new physics components from the
conventional atmospheric neutrino flux, as well as from each other, will be
very challenging. We show that the charged-current {\it electron} neutrino
"shower" channel should be particularly effective for isolating the prompt
atmospheric neutrino flux, and that it is more generally an important
complement to the usually-considered charged-current {\it muon} neutrino
"track" channel. These conclusions remain true even for the low prompt
atmospheric neutrino flux predicted in a realistic cosmic ray scenario with
heavy and varying composition across the knee (Candia and Roulet, 2003 JCAP
{\bf 0309}, 005). We also improve the corresponding calculation of the neutrino
flux induced by cosmic ray collisions with the interstellar medium.Comment: 15 pages, 4 figures. Minor modifications, version accepted for
publication in JCA
- …
