45 research outputs found

    Impact of neuraminidase inhibitors on influenza A(H1N1)pdm09‐related pneumonia: an individual participant data meta‐analysis

    Get PDF
    BACKGROUND: The impact of neuraminidase inhibitors (NAIs) on influenza‐related pneumonia (IRP) is not established. Our objective was to investigate the association between NAI treatment and IRP incidence and outcomes in patients hospitalised with A(H1N1)pdm09 virus infection. METHODS: A worldwide meta‐analysis of individual participant data from 20 634 hospitalised patients with laboratory‐confirmed A(H1N1)pdm09 (n = 20 021) or clinically diagnosed (n = 613) ‘pandemic influenza’. The primary outcome was radiologically confirmed IRP. Odds ratios (OR) were estimated using generalised linear mixed modelling, adjusting for NAI treatment propensity, antibiotics and corticosteroids. RESULTS: Of 20 634 included participants, 5978 (29·0%) had IRP; conversely, 3349 (16·2%) had confirmed the absence of radiographic pneumonia (the comparator). Early NAI treatment (within 2 days of symptom onset) versus no NAI was not significantly associated with IRP [adj. OR 0·83 (95% CI 0·64–1·06; P = 0·136)]. Among the 5978 patients with IRP, early NAI treatment versus none did not impact on mortality [adj. OR = 0·72 (0·44–1·17; P = 0·180)] or likelihood of requiring ventilatory support [adj. OR = 1·17 (0·71–1·92; P = 0·537)], but early treatment versus later significantly reduced mortality [adj. OR = 0·70 (0·55–0·88; P = 0·003)] and likelihood of requiring ventilatory support [adj. OR = 0·68 (0·54–0·85; P = 0·001)]. CONCLUSIONS: Early NAI treatment of patients hospitalised with A(H1N1)pdm09 virus infection versus no treatment did not reduce the likelihood of IRP. However, in patients who developed IRP, early NAI treatment versus later reduced the likelihood of mortality and needing ventilatory support

    2015/16 seasonal vaccine effectiveness against hospitalisation with influenza a(H1N1)pdm09 and B among elderly people in Europe: Results from the I-MOVE+ project

    Get PDF
    We conducted a multicentre test-negative caseâ\u80\u93control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged â\u89¥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases

    Neuraminidase Inhibitors and Hospital Length of Stay: A Meta-analysis of Individual Participant Data to Determine Treatment Effectiveness Among Patients Hospitalized With Nonfatal 2009 Pandemic Influenza A(H1N1) Virus Infection

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected]. BACKGROUND: The effect of neuraminidase inhibitor (NAI) treatment on length of stay (LoS) in patients hospitalized with influenza is unclear. METHODS: We conducted a one-stage individual participant data (IPD) meta-analysis exploring the association between NAI treatment and LoS in patients hospitalized with 2009 influenza A(H1N1) virus (A[H1N1]pdm09) infection. Using mixed-effects negative binomial regression and adjusting for the propensity to receive NAI, antibiotic, and corticosteroid treatment, we calculated incidence rate ratios (IRRs) and 95% confidence intervals (CIs). Patients with a LoS o

    Efficacy of PLD-118, a Novel Inhibitor of Candida Isoleucyl-tRNA Synthetase, against Experimental Oropharyngeal and Esophageal Candidiasis Caused by Fluconazole-Resistant C. albicans

    No full text
    PLD-118, formerly BAY 10-8888, is a synthetic antifungal derivative of the naturally occurring β-amino acid cispentacin. We studied the activity of PLD-118 in escalating dosages against experimental oropharyngeal and esophageal candidiasis (OPEC) caused by fluconazole (FLC)-resistant Candida albicans in immunocompromised rabbits. Infection was established by fluconazole-resistant (MIC > 64 μg/ml) clinical isolates from patients with refractory esophageal candidiasis. Antifungal therapy was administered for 7 days. Study groups consisted of untreated controls; animals receiving PLD-118 at 4, 10, 25, or 50 mg/kg of body weight/day via intravenous (i.v.) twice daily (BID) injections; animals receiving FLC at 2 mg/kg/day via i.v. BID injections; and animals receiving desoxycholate amphotericin B (DAMB) i.v. at 0.5 mg/kg/day. PLD-118- and DAMB-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, and esophagus in comparison to untreated controls (P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, respectively), while FLC had no significant activity. PLD-118 demonstrated nonlinear plasma pharmacokinetics across the investigated dosage range, as was evident from a dose-dependent increase in plasma clearance and a dose-dependent decrease in the area under the plasma concentration-time curve. The biochemical safety profile was similar to that of FLC. In summary, PLD-118 demonstrated dosage-dependent antifungal activity and nonlinear plasma pharmacokinetics in treatment of experimental FLC-resistant oropharyngeal and esophageal candidiasis

    Intrapulmonary Pharmacokinetics and Pharmacodynamics of Micafungin in Adult Lung Transplant Patients▿

    No full text
    Invasive pulmonary aspergillosis is a life-threatening infection in lung transplant recipients; however, no studies of the pharmacokinetics and pharmacodynamics (PKPD) of echinocandins in transplanted lungs have been reported. We conducted a single-dose prospective study of the intrapulmonary and plasma PKPD of 150 mg of micafungin administered intravenously in 20 adult lung transplant recipients. Epithelial lining fluid (ELF) and alveolar cell (AC) samples were obtained via bronchoalveolar lavage performed 3, 5, 8, 18, or 24 h after initiation of infusion. Micafungin concentrations in plasma, ELF, and ACs were determined using high-pressure liquid chromatography. Noncompartmental methods, population analysis, and multiple-dose simulations were used to calculate PKPD parameters. Cmax in plasma, ELF, and ACs was 4.93, 1.38, and 17.41 μg/ml, respectively. The elimination half-life in plasma was 12.1 h. Elevated concentrations in ELF and ACs were sustained during the 24-h sampling period, indicating prolonged compartmental half-lives. The mean micafungin concentration exceeded the MIC90 of Aspergillus fumigatus (0.0156 μg/ml) in plasma (total and free), ELF, and ACs throughout the dosing interval. The area under the time-concentration curve from 0 to 24 h (AUC0-24)/MIC90 ratios in plasma, ELF, and ACs were 5,077, 923.1, and 13,340, respectively. Multiple-dose simulations demonstrated that ELF and AC concentrations of micafungin would continue to increase during 14 days of administration. We conclude that a single 150-mg intravenous dose of micafungin resulted in plasma, ELF, and AC concentrations that exceeded the MIC90 of A. fumigatus for 24 h and that these concentrations would continue to increase during 14 days of administration, supporting its potential activity for prevention and early treatment of pulmonary aspergillosis

    Efficacy and Safety of Generic Amphotericin B in Experimental Pulmonary Aspergillosis

    No full text
    The recent shortage of the brand name drug Fungizone has necessitated a change to generic formulations of amphotericin B deoxycholate. Clinical trials cannot be conducted in a timely manner to provide data on the safety and efficacy of these formulations. We therefore compared generic amphotericin B and Fungizone for activity and safety in the treatment of experimental invasive pulmonary aspergillosis (IPA) in persistently neutropenic rabbits. Fungizone and generic amphotericin B are similar in efficacy, pharmacokinetics, and safety in the treatment of experimental IPA
    corecore