176 research outputs found

    Performance Models for Split-execution Computing Systems

    Full text link
    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.Comment: Presented at 18th Workshop on Advances in Parallel and Distributed Computational Models [APDCM2016] on 23 May 2016; 10 page

    Multi-lepton signals from the top-prime quark at the LHC

    Full text link
    We analyze the collider signatures of models with a vector-like top-prime quark and a massive color-octet boson. The top-prime quark mixes with the top quark in the Standard Model, leading to richer final states than ones that are investigated by experimental collaborations. We discuss the multi-lepton final states, and show that they can provide increased sensitivity to models with a top-prime quark and gluon-prime. Searches for new physics in high multiplicity events are an important component of the LHC program and complementary to analyses that have been performed.Comment: 7 pages, 4 figures, 2 table

    Beyond the ‘Tomlinson Trap’: analysing the effectiveness of section 1 of the Compensation Act 2006

    Get PDF
    One of the intentions underpinning section 1 of the Compensation Act 2006 was to provide reassurance to individual volunteers, and voluntary organisations, involved in what the provision called ‘desirable activities’ and including sport. The perception was that such volunteers, motivated by an apprehension about their increased vulnerability to negligence liability, and as driven by a fear of a wider societal compensation culture, were engaging excessively in risk-averse behaviour to the detriment of such socially desirable activities. Academic commentary on section 1 of the Compensation Act 2006 has largely regarded the provision as unnecessary and doing little more than restating existing common law practice. This article argues otherwise and, on critically reviewing the emerging jurisprudence, posits the alternative view that section 1, in practice, affords an enhanced level of protection and safeguarding for individuals undertaking functions in connection with a desirable activity. Nonetheless, the occasionally idiosyncratic judicial interpretation given to term ‘desirable activity’, potentially compounded by recent enactment of the Social Action, Responsibility and Heroism Act 2015, remains problematic. Two points of interest will be used to inform this debate. First, an analysis of the then House of Lords’ decision in Tomlinson and its celebrated ‘balancing exercise’ when assessing reasonableness in the context of negligence liability. Second, a fuller analysis of the application of section 1 in the specific context of negligence actions relating to the coaching of sport where it is argued that the, albeit limited, jurisprudence might support the practical utility of a heightened evidential threshold of gross negligence

    TeV physics and the Planck scale

    Get PDF
    Supersymmetry is one of the best motivated possibilities for new physics at the TeV scale. However, both concrete string constructions and phenomenological considerations suggest the possibility that the physics at the TeV scale could be more complicated than the Minimal Supersymmetric Standard Model (MSSM), e.g., due to extended gauge symmetries, new vector-like supermultiplets with non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly comment on some of these possibilities, and discuss in more detail the class of extensions of the MSSM involving an additional standard model singlet field. The latter provides a solution to the μ\mu problem, and allows significant modifications of the MSSM in the Higgs and neutralino sectors, with important consequences for collider physics, cold dark matter, and electroweak baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic

    Sports coaching and the law of negligence: implications for coaching practice

    Get PDF
    The ordinary principles of the law of negligence are applicable in the context of sport, including claims brought against volunteer and professional coaches. Adopting the perspective of the coach, this article intends to raise awareness of the emerging intersection between the law of negligence and sports coaching, by utilising an interdisciplinary analysis designed to better safeguard and reassure coaches mindful of legal liability. Detailed scrutiny of two cases concerning alleged negligent coaching, with complementary discussion of some of the ethical dilemmas facing modern coaches, reinforces the legal duty and obligation of all coaches to adopt objectively reasonable and justifiable coaching practices when interacting with athletes. Problematically, since research suggests that some coaching practice may be underpinned by ‘entrenched legitimacy’ and ‘uncritical inertia’, it is argued that coach education and training should place a greater emphasis on developing a coach’s awareness and understanding of the evolving legal context in which they discharge the duty of care incumbent upon them

    Induction, Philosophical Conceptions of

    Get PDF
    How induction was understood took a substantial turn during the Renaissance. At the beginning, induction was understood as it had been throughout the medieval period, as a kind of propositional inference that is stronger the more it approximates deduction. During the Renaissance, an older understanding, one prevalent in antiquity, was rediscovered and adopted. By this understanding, induction identifies defining characteristics using a process of comparing and contrasting. Important participants in the change were Jean Buridan, humanists such as Lorenzo Valla and Rudolph Agricola, Paduan Aristotelians such as Agostino Nifo, Jacopo Zabarella, and members of the medical faculty, writers on philosophy of mind such as the Englishman John Case, writers of reasoning handbooks, and Francis Bacon

    (Cyclopentadienone)iron-Catalyzed Transfer Dehydrogenation of Symmetrical and Unsymmetrical Diols to Lactones

    Full text link
    Air-stable iron carbonyl compounds bearing cyclopentadienone ligands with varying substitution were explored as catalysts in dehydrogenative diol lactonization reactions using acetone as both the solvent and hydrogen acceptor. Two catalysts with trimethylsilyl groups in the 2- and 5-positions, [2,5-(SiMe3)2-3,4-(CH2)4(η4-C4C═O)]Fe(CO)3 (1) and [2,5-(SiMe3)2-3,4-(CH2)3(η4-C4C═O)]Fe(CO)3 (2), were found to be the most active, with 2 being the most selective in the lactonization of diols containing both primary and secondary alcohols. Lactones containing five-, six-, and seven-membered rings were successfully synthesized, and no over-oxidations to carboxylic acids were detected. The lactonization of unsymmetrical diols containing two primary alcohols occurred with catalyst 1, but selectivity was low based on alcohol electronics and modest based on alcohol sterics. Evidence for a transfer dehydrogenation mechanism was found, and insight into the origin of selectivity in the lactonization of 1°/2° diols was obtained. Additionally, spectroscopic evidence for a trimethylamine-ligated iron species formed in solution during the reaction was discovered
    corecore