1,662 research outputs found

    Polyunsaturated fatty acid-derived lipid mediators and T cell function

    Get PDF
    Copyright © 2014 Nicolaou, Mauro, Urquhart and Marelli-Berg . This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    Polyunsaturated fatty acid-derived lipid mediators and T cell function

    Get PDF
    Copyright © 2014 Nicolaou, Mauro, Urquhart and Marelli-Berg . This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    New VLT observations of the Fermi pulsar PSR J1048-5832

    Full text link
    PSR J1048-5832 is a Vela-like (P=123.6 ms; tau~20.3 kyr) gamma-ray pulsar detected by Fermi, at a distance of ~2.7 kpc and with a rotational energy loss rate dot{E}_{SD} ~2 x 10^{36} erg/s. The PSR J1048-5832 field has been observed with the VLT in the V and R bands. We used these data to determine the colour of the object detected closest to the Chandra position (Star D) and confirm that it is not associated with the pulsar. For the estimated extinction along the line of sight, inferred from a re-analysis of the Chandra and XMM-Newton spectra, the fluxes of Star D (V~26.7; R~25.8) imply a -0.13 < (V-R)_0 < 0.6. This means that the PSR J1048-5832 spectrum would be unusually red compared to the Vela pulsar.Moreover, the ratio between the unabsorbed optical and X-ray flux of PSR J1048-5832 would be much higher than for other young pulsars. Thus, we conclude that Star D is not the PSR J1048-5832 counterpart. We compared the derived R and V-band upper limits (R>26.4; V>27.6) with the extrapolation of the X and gamma-ray spectra and constrained the pulsar spectrum at low-energies. In particular, the VLT upper limits suggest that the pulsar spectrum could be consistent with a single power-law, stretching from the gamma-rays to the optical.Comment: 5 pages, 2 figures, accepted for publication on Monthly Notices of the Royal Astronomical Society Main Journa

    Supergiant Fast X-ray Transients uncovered by the EXTraS project: flares reveal the development of magnetospheric instability in accreting neutron stars

    Get PDF
    The low luminosity, X-ray flaring activity, of the sub-class of high mass X-ray binaries called Supergiant Fast X-ray Transients, has been investigated using XMM-Newton public observations, taking advantage of the products made publicly available by the EXTraS project. One of the goals of EXTraS was to extract from the XMM-Newton public archive information on the aperiodic variability of all sources observed in the soft X-ray range with EPIC (0.2-12 keV). Adopting a Bayesian block decomposition of the X-ray light curves of a sample of SFXTs, we picked out 144 X-ray flares, covering a large range of soft X-ray luminosities (1e32-1e36 erg/s). We measured temporal quantities, like the rise time to and the decay time from the peak of the flares, their duration and the time interval between adjacent flares. We also estimated the peak luminosity, average accretion rate and energy release in the flares. The observed soft X-ray properties of low-luminosity flaring activity from SFXTs is in qualitative agreement with what is expected by the application of the Rayleigh-Taylor instability model in accreting plasma near the neutron star magnetosphere. In the case of rapidly rotating neutron stars, sporadic accretion from temporary discs cannot be excluded.Comment: Accepted for publication in MNRAS (accepted 2019 May 1; received 2019 April 30; in original form 2019 February 25). 22 pages, 16 figures, 3 tables

    Large Binocular Telescope observations of PSR J2043+2740

    Get PDF
    We present the results of deep optical imaging of the radio/γ\gamma-ray pulsar PSR J2043+2740, obtained with the Large Binocular Telescope (LBT). With a characteristic age of 1.2 Myr, PSR J2043+2740 is one of the oldest (non recycled) pulsars detected in γ\gamma-rays, although with still a quite high rotational energy reservoir (E˙rot=5.6×1034\dot{E}_{\rm rot} = 5.6 \times 10^{34} erg s1^{-1}). The presumably close distance (a few hundred pc), suggested by the hydrogen column density (NH3.6×1020N_{\rm H} \lesssim 3.6 \times 10^{20} cm2^{-2}), would make it a viable target for deep optical observations, never attempted until now. We observed the pulsar with the Large Binocular Camera of the LBT. The only object (V=25.44±\pm0.05) detected within ~3" from the pulsar radio coordinates is unrelated to it. PSR J2043+2740 is, thus, undetected down to V~26.6 (3-σ\sigma), the deepest limit on its optical emission. We discuss the implications of this result on the pulsar emission properties.Comment: 4 pages, 3 figures, accepted for publication on MNRA

    A candidate optical counterpart to the middle-aged gamma-ray pulsar PSR J1741-2054

    Get PDF
    We carried out deep optical observations of the middle-aged γ\gamma-ray pulsar PSR J1741-2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes mv=23.10±0.05m_v=23.10\pm0.05 and mv=25.32±0.08m_v=25.32\pm0.08, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741-2054. The nebula is displaced by \sim 0\farcs9 (at the 3σ3\sigma confidence level) with respect to its position measured in archival data, showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra, down to a surface brightness limit of 28.1\sim 28.1 magnitudes arcsec2^{-2}. Future observations are needed to confirm the optical identification of PSR J1741-2054 and characterise the spectrum of its counterpart.Comment: 8 pages, 3 figures, Astrophysical Journal, in pres

    X-ray pulsations from the radio-quiet gamma-ray pulsar in CTA 1

    Full text link
    Prompted by the Fermi LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi LAT timing measurements, a 4.7 sigma single peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.Comment: 19 pages, 4 figures. Accepted for publication in ApJ Letter
    corecore