70 research outputs found

    Anomalous Hypothalamic Responses to Humor in Cataplexy

    Get PDF
    Cataplexy is observed in a subset of patients with narcolepsy and affects approximately 1 in 2,000 persons. Cataplexy is most often triggered by strong emotions such as laughter, which can result in transient, yet debilitating, muscle atonia. The objective of this study was to examine the neural systems underlying humor processing in individuals with cataplexy.While undergoing functional Magnetic Resonance Imaging (fMRI), we showed ten narcolepsy-cataplexy patients and ten healthy controls humorous cartoons. In addition, we examined the brain activity of one subject while in a full-blown cataplectic attack. Behavioral results showed that participants with cataplexy rated significantly fewer humorous cartoons as funny compared to controls. Concurrent fMRI showed that patients, when compared to controls and in the absence of overt cataplexy symptoms, showed pronounced activity in the emotional network including the ventral striatum and hypothalamus while viewing humorous versus non-humorous cartoons. Increased activity was also observed in the right inferior frontal gyri--a core component of the inhibitory circuitry. In comparison, the one subject who experienced a cataplectic attack showed dramatic reductions in hypothalamic activity.These findings suggest an overdrive of the emotional circuitry and possible compensatory suppression by cortical inhibitory regions in cataplexy. Moreover, during cataplectic attacks, the hypothalamus is characterized by a marked decrease in activity similar to that observed during sleep. One possible explanation for these findings is an initial overdrive and compensatory shutdown of the hypothalamus resulting in full cataplectic symptoms

    History of narcolepsy at Stanford University

    Get PDF

    Polymorphism of HLA-DRB3 and DRB4 Genes Detected by RFLPs

    No full text

    Low threshold high-power room-temperature continuous-wave operation diode laser emitting at 2.26 μm

    No full text
    International audienceDiode lasers emitting at 2.26 μm, based on the InGaAsSb-AlGaAsSb materials system, are reported. These devices exhibit high internal quantum efficiency of 78% and low threshold current density of 184.5 A/cm2 for a 2-mm-long cavity. Output power up to 700 mW (≈550 mW) has been obtained at 280 K (300 K) in continuous-wave operation with 100 μm×1 mm lasers. These devices have been coated with an antireflection on the output facet and are mounted epilayer down on a copper block. The working temperature was maintained by a thermoelectric Peltier cooling element
    corecore