130 research outputs found

    miR-16 and miR-21 Expression in the Placenta Is Associated with Fetal Growth

    Get PDF
    BACKGROUND: Novel research has suggested that altered miRNA expression in the placenta is associated with adverse pregnancy outcomes and with potentially harmful xenobiotic exposures. We hypothesized that aberrant expression of miRNA in the placenta is associated with fetal growth, a measurable phenotype resulting from a number of intrauterine factors, and one which is significantly predictive of later life outcomes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 107 primary, term, human placentas for expression of 6 miRNA reported to be expressed in the placenta and to regulate cell growth and development pathways: miR-16, miR-21, miR-93, miR-135b, miR-146a, and miR-182. The expression of miR-16 and miR-21 was markedly reduced in infants with the lowest birthweights (p<0.05). Logistic regression models suggested that low expression of miR-16 in the placenta predicts an over 4-fold increased odds of small for gestational age (SGA) status (p = 0.009, 95% CI = 1.42, 12.05). Moreover, having both low miR-16 and low miR-21 expression in the placenta predicts a greater increase in odds for SGA than having just low miR-16 or miR-21 expression (p<0.02), suggesting an additive effect of both of these miRNA. CONCLUSIONS/SIGNIFICANCE: Our study is one of the first to investigate placental miRNA expression profiles associated with birthweight and SGA status. Future research on miRNA whose expression is associated with in utero exposures and markers of fetal growth is essential for better understanding the epigenetic mechanisms underlying the developmental origins of health and disease

    miR-16 and miR-21 Expression in the Placenta Is Associated with Fetal Growth

    Get PDF
    BACKGROUND: Novel research has suggested that altered miRNA expression in the placenta is associated with adverse pregnancy outcomes and with potentially harmful xenobiotic exposures. We hypothesized that aberrant expression of miRNA in the placenta is associated with fetal growth, a measurable phenotype resulting from a number of intrauterine factors, and one which is significantly predictive of later life outcomes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 107 primary, term, human placentas for expression of 6 miRNA reported to be expressed in the placenta and to regulate cell growth and development pathways: miR-16, miR-21, miR-93, miR-135b, miR-146a, and miR-182. The expression of miR-16 and miR-21 was markedly reduced in infants with the lowest birthweights (p<0.05). Logistic regression models suggested that low expression of miR-16 in the placenta predicts an over 4-fold increased odds of small for gestational age (SGA) status (p = 0.009, 95% CI = 1.42, 12.05). Moreover, having both low miR-16 and low miR-21 expression in the placenta predicts a greater increase in odds for SGA than having just low miR-16 or miR-21 expression (p<0.02), suggesting an additive effect of both of these miRNA. CONCLUSIONS/SIGNIFICANCE: Our study is one of the first to investigate placental miRNA expression profiles associated with birthweight and SGA status. Future research on miRNA whose expression is associated with in utero exposures and markers of fetal growth is essential for better understanding the epigenetic mechanisms underlying the developmental origins of health and disease

    Investigating the process of ethical approval in citizen science research. The case of public health

    Get PDF
    Undertaking citizen science research in Public Health involving human subjects poses significant challenges concerning the traditional process of ethical approval. It requires an extension of the ethics of protection of research subjects in order to include the empowerment of citizens as citizen scientists. This paper investigates these challenges and illustrates the ethical framework and the strategies developed within the CitieS-Health project. It also proposes first recommendations generated from the experiences of five citizen science pilot studies in environmental epidemiology within this project

    In Utero Exposures, Infant Growth, and DNA Methylation of Repetitive Elements and Developmentally Related Genes in Human Placenta

    Get PDF
    BACKGROUND: Fetal programming describes the theory linking environmental conditions during embryonic and fetal development with risk of diseases later in life. Environmental insults in utero may lead to changes in epigenetic mechanisms potentially affecting fetal development. OBJECTIVES: We examined associations between in utero exposures, infant growth, and methylation of repetitive elements and gene-associated DNA in human term placenta tissue samples. METHODS: Placental tissues and associated demographic and clinical data were obtained from subjects delivering at Women and Infants Hospital in Providence, Rhode Island (USA). Methylation levels of long interspersed nuclear element-1 (LINE-1) and the Alu element AluYb8 were determined in 380 placental samples from term deliveries using bisulfite pyrosequencing. Genomewide DNA methylation profiles were obtained in a subset of 184 samples using the Illumina Infinium HumanMethylation27 BeadArray. Multiple linear regression, model-based clustering methods, and gene set enrichment analysis examined the association between birth weight percentile, demographic variables, and repetitive element methylation and gene-associated CpG locus methylation. RESULTS: LINE-1 and AluYb8 methylation levels were found to be significantly positively associated with birth weight percentile (p = 0.01 and p \u3c 0.0001, respectively) and were found to differ significantly among infants exposed to tobacco smoke and alcohol. Increased placental AluYb8 methylation was positively associated with average methylation among CpG loci found in polycomb group target genes; developmentally related transcription factor binding sites were overrepresented for differentially methylated loci associated with both elements. CONCLUSIONS: Our results suggest that repetitive element methylation markers, most notably AluYb8 methylation, may be susceptible to epigenetic alterations resulting from the intrauterine environment and play a critical role in mediating placenta function, and may ultimately inform on the developmental basis of health and disease

    Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes

    Get PDF
    Background: Prenatal mercury (Hg) exposure is associated with adverse child neurobehavioral outcomes. Because Hg can interfere with placental functioning and cross the placenta to target the fetal brain, prenatal Hg exposure can inhibit fetal growth and development directly and indirectly. Objectives: We examined potential associations between prenatal Hg exposure assessed through infant toenail Hg, placental DNA methylation changes, and newborn neurobehavioral outcomes. Methods: The methylation status of \u3e 485,000 CpG loci was interrogated in 192 placental samples using Illumina’s Infinium HumanMethylation450 BeadArray. Hg concentrations were analyzed in toenail clippings from a subset of 41 infants; neurobehavior was assessed using the NICU Network Neurobehavioral Scales (NNNS) in an independent subset of 151 infants. Results: We identified 339 loci with an average methylation difference \u3e 0.125 between any two toenail Hg tertiles. Variation among these loci was subsequently found to be associated with a high-risk neurodevelopmental profile (omnibus p-value = 0.007) characterized by the NNNS. Ten loci had p \u3c 0.01 for the association between methylation and the high-risk NNNS profile. Six of 10 loci reside in the EMID2 gene and were hypomethylated in the 16 high-risk profile infants’ placentas. Methylation at these loci was moderately correlated (correlation coefficients range, –0.33 to –0.45) with EMID2 expression. Conclusions: EMID2 hypomethylation may represent a novel mechanism linking in utero Hg exposure and adverse infant neurobehavioral outcomes

    Evaluation of the Influenza A Replicon for Transient Expression of Recombinant Proteins in Mammalian Cells

    Get PDF
    Recombinant protein expression in mammalian cells has become a very important technique over the last twenty years. It is mainly used for production of complex proteins for biopharmaceutical applications. Transient recombinant protein expression is a possible strategy to produce high quality material for preclinical trials within days. Viral replicon based expression systems have been established over the years and are ideal for transient protein expression. In this study we describe the evaluation of an influenza A replicon for the expression of recombinant proteins. We investigated transfection and expression levels in HEK-293 cells with EGFP and firefly luciferase as reporter proteins. Furthermore, we studied the influence of different influenza non-coding regions and temperature optima for protein expression as well. Additionally, we exploited the viral replication machinery for the expression of an antiviral protein, the human monoclonal anti-HIV-gp41 antibody 3D6. Finally we could demonstrate that the expression of a single secreted protein, an antibody light chain, by the influenza replicon, resulted in fivefold higher expression levels compared to the usually used CMV promoter based expression. We emphasize that the influenza A replicon system is feasible for high level expression of complex proteins in mammalian cells

    Placental 11-Beta Hydroxysteroid Dehydrogenase Methylation Is Associated with Newborn Growth and a Measure of Neurobehavioral Outcome

    Get PDF
    Background: There is growing evidence that the intrauterine environment can impact the neurodevelopment of the fetus through alterations in the functional epigenome of the placenta. In the placenta, the HSD11B2 gene encoding the 11-beta hydroxysteroid dehydrogenase enzyme, which is responsible for the inactivation of maternal cortisol, is regulated by DNA methylation, and has been shown to be susceptible to stressors from the maternal environment. Methodology/Principal Findings: We examined the association between DNA methylation of the HSD11B2 promoter region in the placenta of 185 healthy newborn infants and infant and maternal characteristics, as well as the association between this epigenetic variability and newborn neurobehavioral outcome assessed with the NICU Network Neurobehavioral Scales. Controlling for confounders, HSD11B2 methylation extent is greatest in infants with the lowest birthweights (P = 0.04), and this increasing methylation was associated with reduced scores of quality of movement (P = 0.04). Conclusions/Significance: These results suggest that factors in the intrauterine environment which contribute to birth outcome may be associated with placental methylation of the HSD11B2 gene and that this epigenetic alteration is in turn associated with a prospectively predictive early neurobehavioral outcome, suggesting in some part a mechanism for th

    Insulin-like growth factor axis in pregnancies affected by fetal growth disorders

    Get PDF
    Background: Insulin-like growth factors 1 and 2 (IGF1 and IGF2) and their binding proteins (IGFBPs) are expressed in the placenta and known to regulate fetal growth. DNA methylation is an epigenetic mechanism which involves addition of methyl group to a cytosine base in the DNA forming a methylated cytosine-phosphate-guanine (CpG) dinucleotide which is known to silence gene expression. This silences gene expression, potentially altering the expression of IGFs and their binding proteins. This study investigates the relationship between DNA methylation of components of the IGF axis in the placenta and disorders in fetal growth. Placental samples were obtained from cord insertions immediately after delivery from appropriate, small (defined as birthweight the 90th percentile for the gestation [LGA]) neonates. Placental DNA methylation, mRNA expression and protein levels of components of the IGF axis were determined by pyrosequencing, rtPCR and Western blotting. Results: In the placenta from small for gestational age (SGA) neonates (n = 16), mRNA and protein levels of IGF1 were lower and of IGFBPs (1, 2, 3, 4 and 7) were higher (p < 0.05) compared to appropriately grown neonates (n = 37). In contrast, in the placenta from large for gestational age (LGA) neonates (n = 20), mRNA and protein levels of IGF1 was not different and those of IGFBPs (1, 2, 3 and 4) were lower (p < 0.05) compared to appropriately grown neonates. Compared to appropriately grown neonates, CpG methylation of the promoter regions of IGF1 was higher in SGA neonates. The CpG methylation of the promoter regions of IGFBP1, IGFBP2, IGFBP3, IGFBP4 and IGFBP7 was lower in the placenta from SGA neonates as compared to appropriately grown neonates, but was unchanged in the placenta from LGA neonates. Conclusions: Our results suggest that changes in CpG methylation contribute to the changes in gene expression of components of the IGF axis in fetal growth disorders. Differential methylation of the IGF1 gene and its binding proteins is likely to play a role in the pathogenesis of SGA neonates
    corecore